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This dissertation focuses on supply chain management (SCM) decisions under various

marketing strategies in the Operations Management (OM) / Marketing interface research

area. It is composed of three primary research chapters. The first research chapter

examines optimal inventory and pricing decisions under advance selling. Advance selling is

a marketing strategy in which consumers have a chance to reserve a product in an advance

sales period which occurs prior to the sales period. The retailer in this scenario must make

an inventory order decision before the advance sales period begins to best meet demand in

both the advance sales and consumption periods. I derive optimal inventory and pricing

policies. The second research chapter focuses on optimal pricing and time-to-market

decisions in a new product technology (NPD) environment. I consider two generations of

a new technology product considering both price and diffusion effects on sales. I derive

optimal pricing and time-to-market decisions for three different sales functions. The final

research chapter considers the innovation speed of new technologies in a pricing and

time-to-market model. I determine the optimal number of generations to offer of a new

product in this scenario. All three research chapters contribute to the OM/Marketing

research literature by solving business problems from a combined OM and Marketing

perspective.
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CHAPTER 1
INTRODUCTION

In this chapter, I define the general area of research for the dissertation and introduce

the various research chapters.

1.1 Operations Management (OM) / Marketing Interface Research

The focus of this dissertation work is on making joint operations and marketing

decisions for standard supply chain problems in various marketing settings. The

importance of OM/Marketing interface work has been highlighted in recent literature in

both the OM and Marketing fields. This new academic perspective has been motivated by

problems arising in industry when OM and Marketing departments discover their separate

goals may be conflicting and have negative effects on the company as a whole. Thus

OM/Marketing interface research strives to simultaneously consider OM and Marketing

decisions and objectives in order to maximize benefits for the entire firm.

1.2 Inventory Management under Advance Selling: Optimal Order and
Pricing Policies

Advance selling is a marketing strategy in which an advance sales period precedes

the spot period, and customers are uncertain about their future product valuation. I

consider an inventory management decision, in which I decide an inventory order quantity

as well as a portion of this inventory to reserve for advance sales. I use an expected profit

maximization model to find the optimal order and pricing policies.

I find the optimal advance sales inventory level to be an extreme point solution. This

leads to a ”go/no-go” advance sales decision in which I either spot sell (sell in the spot

period) to all customers and advance sell to no one or advance sell (sell in the advance

sales period) to almost all customers. I derive several analytical results and perform

numerical experiments which examine the behavior of the optimal order policy and

provide sensitivity analysis on the model parameters.

10
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1.3 Multi-Generation Pricing and Timing Decisions in New Product
Development

When planning for the introduction of a stream of new products into the marketplace,

managers must consider both the timing and dynamic pricing decisions to determine

an appropriate entry strategy into the marketplace. Literature in the new product

development (NPD) area has addressed optimal timing of multiple generations of products

and the dynamic pricing decisions independently. However, no analytic results have been

developed when these decisions are considered simultaneously.

In Chapter 4, I develop an analytical model of coordinated product introduction and

pricing decisions when there are two generations of a new product under consideration.

Factors driving the decisions include the unit sales and cost relationships for each

generation as well as NPD costs for introducing the next generation of products. I

derive analytic results that characterize the optimal timing and pricing strategies. In

addition, I identify an optimal threshold value for the length of the planning horizon which

dictates the new product introduction strategy. Further insights are obtained for a special

case of the model where the two generations of products have similar sales and pricing

characteristics.

1.4 Optimal Number of Generations for a Multi-Generation Pricing and
Timing Model in New Product Development

In Chapter 5, I seek to find the optimal number of generations to introduce under

the pricing and time-to-market NPD model developed in Chapter 4. In Chapter 5, I

consider a multi-generation new technology product with sales as a function of both

price and diffusion. In addition to solving for the optimal pricing policy and optimal

time to market for each generation, I find the optimal number of generations that a

firm should introduce. The new product development (NPD) literature has addressed

the time-to-market decision for multi-generation products and simultaneous optimal

pricing policies have recently been introduced to the Operations Management (OM) /

Marketing Interface literature. However, very little work has been done on the optimal

11
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number of generations to introduce. In comparison with innovation speed (or clockspeed)

papers, I consider a specific additive model of sales with both pricing and diffusion effects

and simultaneously solve for optimal pricing, timing, and number of generations for a

maximum profit objective. The analytics employ optimal control theory. An extensive

numerical analysis is also performed.

1.5 Overview of the Dissertation

The remainder of the dissertation is organized as follows. In Chapter 2, I present a

detailed review of the literature. I discuss papers which pertain to the importance and

scope of OM/Marketing Interface work, as well as papers related to the research done in

each of the dissertation chapters. The next three chapters comprise the main research

of the dissertation. In Chapter 3, I discuss the work titled “Inventory Management

Under Advance Selling: Optimal Order and Pricing Policies”, in Chapter 4, I present

“Multi-Generation Pricing and Timing Decisions in New Product Development”,

and in Chapter 5, I present the research for “Optimal Number of Generations for a

Multi-Generation Pricing and Timing Model in New Product Development”. In each of

these research chapters, I introduce the problem, describe the model and assumptions,

perform the analysis, and review numerical experiments. The final chapter of the

dissertation, Chapter 6, provides the conclusions for each of these research chapters

and discusses future research extensions for these works as well as in the general

OM/Marketing Interface research area.

12
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CHAPTER 2
LITERATURE REVIEW

In this chapter, I present a review of the literature related to the research in each of

the main chapters. I also discuss the literature pertaining to the general OM/Marketing

Interface research area.

2.1 OM/Marketing Interface

Several papers in the recent literature of both the OM and Marketing fields have

highlighted the importance of interface research. Some survey papers such as Karmarkar

(1996) [1] and Balasubramanian, et.al. (2004) [2] as well as some empirical work such

as Hausman, et.al. (2002) [3] examine problems caused by miscommunication between

business departments and disjoint objectives in the supply chain. They show how a

marketing push for higher prices and quicker turnover can have a negative influence

on operations cost and production requirements. Likewise operations priorities such as

lower costs and other inventory and production motivations can hurt marketing goals.

The academic community has now been challenged by industry to help coordinate these

multi-disciplinary goals by researching joint decision problems. In the extensive work

of Eliashberg, et.al. (1993) [4], these new marketing-production joint decision problems

are discussed as this new optimization area continues to expand. Below, I refer to more

specific works corresponding to each of the research chapters in this dissertation.

2.2 Inventory Management under Advance Selling: Optimal Order and
Pricing Policies

The advance sales strategy is most clearly defined in the marketing literature. There

is however also related literature in the revenue management and inventory research

areas. In this section , I discuss the relative literature for advance selling and operations

management decision making.

Xie and Shugan (2001) [5] write a comprehensive paper describing the idea and

benefits behind advance selling. They show that advanced selling is profitable in the

general scenario of unknown future consumer valuation. Their paper assumes that the

13
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consumer’s valuation function is Bernoulli with high, H, or low, L, values occurring with

probability α and (1−α), respectively. They also assume that a deterministic N customers

arrive in both the advance sales and spot sales period. They state that if the marginal cost

of offering advanced selling is low to medium, then advanced selling should be offered and

the advance sales price should be set to the expected price αH + (1 − α)L and the spot

price should be set to H. They then describe optimal advance selling strategies for various

capacity scenarios. They show that if capacity is limited, but large, then the advance

sales price can be set to a premium and the spot price should be set to L. In another

limited capacity scenario with medium capacity, the advance sales price should be set to

the expected price αH + (1 − α)L and the spot price should be set to H. In the third

limited capacity scenario with small capacity, there should be limited advanced sales with

the advance sales price set to the expected price αH + (1 − α)L and the spot price set to

H. The modeling techniques used in their paper include dynamic programming to find the

optimal spot price, followed by the optimal advance sales price. I advance their modeling

assumptions by considering a more realistic description of customer arrivals and dynamic

customer valuations.

Shugan and Xie (2004) [6] write another paper describing the advance selling in

service industries. This paper is quite similar to Shugan and Xie (2001), but it uses an

exponential customer valuation function instead of the Bernoulli distribution. It also

gives a comparison of advanced sales to yield management systems (YMS). It explains

that YMS are limited because it requires binding capacity constraints, very low marginal

cost of additional sales, and an inverse relationship between consumer price sensitivity

and customer arrival time. Their paper also reviews various scenarios in which advanced

sales is beneficial, again including limited capacity (limited advanced sales and premium

advanced sales). Their modeling in this paper uses a buyer decision tree when advanced

sales are priced at a premium and a simple 2-case model is used to compare advanced sale

and spot sale profits.

14
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As discussed in the Shugan and Xie (2004) paper, advance selling is similar to yield

management, or revenue management. Thus, there are some related ideas found in the

revenue management literature. The Desiraju and Shugan (1999) paper [7] clearly defines

yield management systems (YMS). Pricing strategies based on YMS may indeed be

profitable. They consider discounting, overbooking (which is shown to be beneficial in

some cases), and limited early sales for capacity-constrained services. In YMS, there

are two distinct market segments: price-insensitive, which have high valuations, and

price-sensitive, which have low valuations. There are also three distinct service classes.

Class A represents early arrivals from the price-sensitive market, Class B represents early

arrivals from the price-insensitive market, and Class C represents early arrivals from both

markets (that is, there is no distinction among the market segments). Their results show

that for Class A, limited early sales at lower/increasing prices is the best strategy, for

Class B, unlimited early sales at higher/decreasing prices is best, and for Class C, YMS

is not profitable so the firm should sell at their best price. Their modeling techniques

include dynamic programming: for a given optimal spot price, they consider total profits

to find the best advance sales price. They leave some open extensions to their work, such

as considering competition, additional market segments, channels of distribution, different

quality levels, and signaling on YMS.

This paper makes the clear distinction between revenue management and advance

selling in the assumption requirements. Advance selling only requires that customers

are uncertain about their future valuation, whereas revenue management assumes a

certain timing of different customer segments and usually a capacity constraint. Revenue

management seeks more to allocate a given capacity among customer segments by creating

a price menu. In advance selling, customers are homogeneous and may arrive at any time

to the market.

Ideas similar to advance selling can also be found in the inventory literature.

15
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Tang, et. al. (2004) [8] describe an inventory strategy called Advance Booking

Discounts (ABD). They discuss the benefits of this strategy over Quick Response (QR),

a similar inventory strategy. In QR, a firm produces in a first period (based on retailer

estimates) and also produces in a second period (based on retailer updated estimate after

some early sales). In ABD, however, a firm produces in only one period (after pre-season

discount sales). Their results show that profits from the ABD strategy with forecast

updating are greater than profits of ABD without forecast updating. They also show

that profits of ABD can be greater than a base case scenario (where no ABD strategy is

employed). They find that discount prices with forecast updating are greater than the

discount prices without updating. Their model seeks to maximize profit. They achieve

newsvendor results. Some extensions to their work include finding the optimal length

of the ABD advanced period, considering ABD premiums instead of discounts, and

considering capacity constraints.

In an earlier paper, Iyer and Bergen (1997) [9] introduce the benefits of QR. They

discuss conditions under which it is Pareto-improving (both retailer and manufacturer

benefit or are as well off). With QR, there is an initial demand observation period, then

the retailer places order, then the lead time for production/shipping occurs, then the order

is received and the season begins. Their results show that QR is always beneficial for the

retailer, but not necessarily for the manufacturer. In order to make QR Pareto-improving,

the firm must examine their service level, price, and volume commitments. QR also

depends on the accuracy of the demand estimate from the initial observation period.

They use a profit-maximization model. They find a newsvendor solution for an optimal

inventory level and service level. They determine that in order to find expected profits for

QR, the firm should choose an order size which maximizes profit for a posterior demand

distribution. Some extensions to their work include competition, multiple sales periods,

and multiple manufacturers. They could also consider if QR is beneficial in other markets?

16
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Also, what would be the effect of the demand observation period length on the QR benefit

to the retailer and manufacturer?

In general, there seems to be an open research direction for applying operations

management decisions to sales strategies such as advance selling. My research contributes

to the literature by presenting a more realistic model of consumer’s valuation with

uncertainty, finding an optimal pricing strategy using dynamic pricing for the advance

sales period.

2.3 Multi-Generation Pricing and Timing Decisions in New Product
Development

The literature related to the model in Chapter 4 can be divided into the following

categories: Sales Behavior for Single and Multiple Generations, Pricing Decisions, and

Timing Decisions research. While most of this literature addresses a subset of these topics

in isolation, I combine the dynamic pricing and generational timing decisions into a single

model.

A large body of literature addresses the sales and/or diffusion process for products in

both single and multiple generation settings. Many of these stem from Bass (1969) [10]

who describes the diffusion process for a single generation of products as a function of

both innovation (i.e. early adopters) and imitation (i.e. later buyers). This empirically

based model has been shown to be a robust characterization for the diffusion process of

durable goods including growth, maturity and decline phases of the product life cycle.

Norton and Bass (1987) [11] create a multiple generation version of the original Bass

model which incorporates substitution effects and increasing sales across the generations.

One key facet of their model utilized here concerns the assumption that the innovation

and imitation parameters remain the same across multiple generations of the same

product.

Another body of literature addresses the dynamic pricing problem associated with the

introduction of a single generation of a new product into the marketplace. Kalish (1983)

17
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[12] analyzes different scenarios illustrating the impact of discounting, learning effects and

diffusion on the dynamic pricing problems. One of the scenarios that Kalish examines is

the case of a durable good where positive word of mouth stimulates demand early in the

life cycle, while saturation takes over and demand increases later in the life cycle. The

optimal dynamic price under these conditions will start relatively low, increase as long

as the word-of-mouth effect overcomes the saturation effect, and then decrease for the

remainder of the planning horizon. Bass et al. (1994) [13] propose a generalized version of

the original Bass model which includes the dynamic effects of pricing and/or advertising

on product diffusion. Krishnan et al. (1999) [14] uses the General Bass Model (GBM) to

identify an optimal price path for a new generation of products. In contrast to previous

literature, these authors find that the optimal dynamic price does not follow a traditional

sales growth pattern, but (in many cases) is decreasing. Sethi and Bass (2003) [15] also

find that both price and sales rate decline over time for a special case of GBM. Teng and

Thompson (1996) [16] consider the impact of both quality and price simultaneously on

cumulative sales and profit. Both Bass et al. (1994) [13] and Krishnan et al. (1999) [14]

offer comprehensive overviews of the literature which incorporates price and/or advertising

factors into diffusion models.

The dynamic pricing problem has been extended to address optimal pricing strategies

for multiple generations of new products. However, the entry time for the new generations

is considered exogenous or given in these models. Padmanabhan and Bass (1993) [17]

analyze a model which captures substitution and cannibalization effects for a firm that

introduces two generations of new products during a finite planning horizon. Results

from this model show that the actual prices changed at each instant of time for the

two products are significantly different with the consideration of product line issues in

the profit maximization problem as compared to the single generation models such as

Kalish (1983) [12]. In their conclusion section, these authors also comment that, “The

demand model used in (this) analysis assumes that the time of entry of the second product
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is determined exogenously.. Endogenous consideration of this issue would be a very

worthwhile contribution to the literature.” Kornish (2001) [18] also considers the pricing

problem for two generations of a product based on the consumers valuations for each

generation.

Several authors address the problem of optimal introductory timing for multiple

generations of new products into a marketplace. Based on numerical analysis, Mahajan

and Muller (1996) [19] develop a now or at maturity rule for the introduction timing of a

second generation of products. Specifically, they find that the firm should either introduce

the second generation as soon as it is available or delay its introduction to the maturity

stage of the preceding generation. Another model which determines the optimal timing

of the introduction of a second product into the marketplace is developed in Carrillo and

Franza (2004) [20], who also consider the impact of both process development and product

development activities on this decision. Morgan et al. (2001) [21] consider a quality versus

time-to-market tradeoff when multiple generations are introduced. Carrillo (2004) [22] and

Carrillo (2005) [23] address the optimal number of generations to introduce during a given

planning horizon and analyze the impact of dynamic profit margins on the timing decision.

However, none of these models considers the impact of timing simultaneously with pricing

as decision variables.

2.4 Optimal Number of Generations for a Multi-Generation Pricing and
Timing Model in New Product Development

The importance of considering clockspeed as a component of NPD decision making

has been highlighted in the recent marketing literature. In Carbonell and Rodriguez

(2006) [24], the authors analyze the effect that innovation speed has on the perception of

marketing advantage. They recognize that innovation speed is an equivalent, if not more

important, marketing characteristic affecting NPD sales. Other marketing literature, such

as Nadler and Tushman(1999) [25], Pearce (2002) [26], and Lambert and Slater (1999) [27]

have discussed the direct impact that innovation speed, or clockspeed, may have on the
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sales rate. In fact, some empirical work has shown that sales may increase as the number

of generations increases.

In the operations management (OM) literature, limited research has been done on the

optimal number of generations to introduce in an NPD scenario. In Carrillo (2005) [23],

the author solves for the optimal clockspeed under various sales curves. Conditions are

derived to determine when firms may have an incentive to increase their clockspeed. In

another paper, by Souza, Bayus, and Wagner (2004) [28], innovation speed is compared

with quality decisions and time to market.

Comparative models can be found in Lukas and Menon (2004) [29], who look at the

joint quality and innovation speed problem, and Dahan and Mendelson (2001) [30] who

examine concept testing in NPD. Another OM work by Xu and Li (2007) [31] address the

joint technology investment and innovation decision in assemble-to-order systems.

In Chapter 4, optimal pricing and time-to-market decisions are derived for a

two-generation new technology product. This chapter makes a substantial contribution

to the OM/Marketing Interface literature for the NPD marketing scenario. Chapter 5

also makes a significant contribution to the OM/Marketing Interface literature by solving

both pricing and time-to-market decisions in addition to solving for the optimal number of

generations of an NPD product.
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CHAPTER 3
INVENTORY MANAGEMENT UNDER ADVANCE SELLING: OPTIMAL ORDER

AND PRICING POLICIES

3.1 Introduction

Advance selling is a marketing strategy in which an advance sales period precedes

the standard consumption, or spot, period. The advance sales period is used to increase

sales by offering customers a chance to commit early to purchasing at what is usually a

discounted price. This strategy takes advantage of customers being uncertain about their

future product valuation. Advance selling has become increasingly more popular with

recent technologies such as smart cards and online booking (see the Economist (2005)

[32]).

Most applications of advance selling are in the service industry. For example, consider

ticket sales for a concert. Ticket prices may be $50 at the door but on sale for $30 if

bought in advance. Other examples of advance selling in the service industry may include

conference registration, movie tickets, and vacation packages.

Much of the literature in advance selling has to do with finding the optimal pricing

policy for the advance and spot sales periods. I am interested in extending this marketing

analysis to include operations decisions, specifically an inventory management decision.

I assume that a one-time inventory order must be placed at the beginning of the

advance sales period. The inventory will not arrive until consumption, which occurs at the

end of the spot period. I may consider a situation in which there is a long lead time for an

inventory order and no opportunity to place another order before consumption.

An example of this scenario may occur in the toy industry. I may need to decide

on an order quantity of toys for an upcoming sales season. Demand may be uncertain

in that customers have not yet realized their future valuation of a particular toy. If the

toys are produced in a distant facility with a long lead time, I may only have one order

opportunity. An advance selling strategy would be to offer reservations of some portion of

these toys and to reserve the remaining portion for in-store sales.
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Another example may occur in event planning. I may need to reserve a location

for an upcoming event with uncertain demand. Again, customers may be uncertain of

their future valuation of attending this event. The order quantity in this case would be

equivalent to the capacity of the location I reserve. Since many event locations must be

reserved prior to the event with some kind of non-refundable deposit, I may consider this

to be a one-time order decision. Advance selling in this scenario would include reserving

some of this capacity for advance sales tickets and leaving the remaining for at-the-door

sales.

A third example may be in real-estate marketing of new condominium development.

When developing a new condominium complex, I must decide ahead of time how many

units to build. Since I cannot add or subtract units once construction begins, I may

consider this to be a one time order decision. Demand is uncertain in that customers are

unsure of their future valuation of purchasing a condominium unit. The advance selling

strategy would involve reserving some units to sell in advance and keeping the remaining

portion available for sale after the condominiums have been completed.

In addition to deciding the inventory order quantity, I also consider what portion of

this inventory to reserve for advance sales. I use analytical and numerical results to better

understand when it is optimal for the firm to offer advance sales, and if so, how many

advance sales to offer. I also seek to determine the optimal pricing policy for the advance

and spot sales periods. I use an expected profit maximization model to find the optimal

order and pricing policies.

The rest of the chapter is organized as follows. In Section 2, I describe the model

and assumptions. In Section 3, I perform the analysis and give structural solutions to

the optimal inventory and pricing policies. In Section 4, I describe several numerical

experiments and discuss sensitivity analysis. In Section 5, I consider an extension for a

different customer valuation distribution and describe related numerical experiments.

Please refer to the Chapter 2 for a review of the related literature.
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3.2 Model

There are two periods in which a firm sells a product or service: the advance sales

period and the spot period. The advance sales period precedes the spot period, and

consumption occurs at the end of the spot period. I have a market of size M , with units

equal to the number of customers. A portion of this market will arrive to the advance

sales period, Na, and the remainder will arrive to the spot period, Ns = M − Na. As with

the market size, Na and Ns represent a number of customers.

The customers that arrive to the advance sales period will be offered the product (or

service) at a price pa. I assume that the spot price ps is also announced to the customers

in the first period.

Customers decide whether or not to buy the product based on their valuation of the

product V , measured as a dollar value. I assume that the true valuation of the product

is not realized until the spot period. Thus, during the advance period, customers are

uncertain about their future valuation but know the distribution of the future valuation

and the expected future valuation, E[V ]. Customers that arrive to the advance sales

period must thus decide whether to buy the product in the advance period or wait until

the spot period based on their expected future valuation, the advance sales price, and the

announced spot price. During the spot period, customers decide whether or not to buy the

product based on the spot price and their realized product valuation.

I consider an inventory management decision under this advance selling scenario.

The firm must place an inventory order Q at the beginning of the advance sales period.

Without loss of generality, I assume that this inventory order is delivered at consumption,

which occurs at the end of the spot period. Some portion of this inventory, Xa, is reserved

for the advance sales demand, and the remaining inventory, Xs = Q−Xa, is used to satisfy

spot sales demand, where I have Xa ≤ Q ≤ M . Consider the timeline in Figure 3-1.

23



www.manaraa.com

I seek to determine the optimal values for the order quantity Q, the advance sales

inventory portion Xa, the advance sales price pa and the spot price ps such that total

expected profit is maximized.

Notations

M Market size

Na Number of customers arriving to advance sales period

Ns Number of customers arriving to spot sales period

pa Advance sales price

ps Spot sales price

V Customer valuation of product at consumption

Q Inventory order quantity

Xa Inventory allocated to advance sales

Xs Inventory allocated to spot sales

Let us now derive the expressions for the advances sales and spot sales demand. The

spot period demand Ds is a Binomial random variable with the number of events equal

to the number of spot period customers Ns = M − Na and the probability of success, or

probability of purchase, dependent on the customer valuation, Pr{ps ≤ V }.

Ds ∼ Binomial(Ns, P r{ps ≤ V }) (3–1)

In the advance sales period, a customer will only buy the product if the expected

utility of an advance purchase is greater than or equal to the expected utility of waiting to

 

Inventory Order Placed Consumption Occurs Advance Sales Period Spot Sales Period Customer Valuation  V Realized Announce Q, Xa, pa, ps 
Figure 3-1. Timeline
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purchase in the spot period. The utility of an advance purchase is the difference between a

customer’s valuation and the advance sales price.

Ua = V − pa (3–2)

Thus I have the expected utility of an advance purchase as follows.

E[Ua] = E[V ]− pa (3–3)

I assume that customers are aware that there is limited inventory available and

thus there is a risk that there may not be enough inventory to satisfy all demand. This

information will affect the customer’s utility of waiting to purchase in the spot period.

Let β represent the probability that a customer will find available inventory in the spot

period. I can think of this probability as the firm’s demand fill rate. I define β as the ratio

of satisfied demand to total demand. I define satisfied demand as the minimum of the

available inventory and the demand: min(Q−Xa, Ds), where Ds is the demand in the spot

period.

β =
min(Q−Xa, Ds)

Ds

(3–4)

The utility of waiting to purchase in the spot period is then the positive difference

between their valuation and the spot price, (V − ps)
+ if inventory remains, or 0 if there is

no inventory. Using β as defined above as the probability of having available inventory in

the spot period, I define the utility of waiting to purchase in the spot period as follows.

Us =





(V − ps)
+, with probability β,

0, with probability 1− β.
(3–5)

Although β is a function of the spot demand, Ds, which is dependent on the customer

valuation V , I assume the valuations which determine the spot demand are for customers

who will sport purchase, which does not include the advance sales customer I am currently
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considering. That is, the valuations considered in the spot demand through the Binomial

probability of success Pr{ps ≤ V } are independent of the valuation of the decision-making

advance sales customer whose valuation appears in (V − ps)
+. Thus, I can calculate the

expected utility of waiting to purchase in the spot period as follows.

E[Us] = E[(V − ps)
+]E[β] (3–6)

Thus, a customer will decide to purchase in the advance sales period if and only if

E[Ua] ≥ E[Us]. Evaluating this comparison translates this condition into a maximum

advance sales price, p̂a for which a customer will decide to advance purchase.

E[Ua] ≥ E[Us] (3–7)

E[V ]− pa ≥ E[(V − ps)
+]E[β] (3–8)

pa ≤ E[V ]− E[(V − ps)
+]E[β] = p̂a (3–9)

Thus, if I set the advance sales price pa equal to this maximum advance-purchase-inducing

price p̂a, then all customers who arrive to the advance sales period will choose to advance

purchase. Since I will decide the portion of the inventory reserved for advance sales, Xa,

I can assume that all of this inventory will be sold in the advance period when pa ≤ p̂a.

Thus, I can consider the number of advance sales customers to be equivalent to this

advance sales inventory portion: Na = Xa, and the number of customers who decide to

wait is zero. That is, I decide Xa and then advance sell to that many customers, Na = Xa,

knowing that they will all agree to advance purchase if pa ≤ p̂a.

The advance sales demand Da is thus equal to the number of customers who arrive to

the advance sales period (Da = Na), which is the same as the portion of inventory that I

reserve for advance sales (Na = Xa).

I can now write my profit-maximization objective function. We assume a unit advance

sales cost ca, unit order cost c, and no salvage value. The profit expression considers profit

earned from the advance sales purchases Xa, revenue from spot sales, and the inventory
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order cost.

Π = (pa − ca)Xa + ps min(Q−Xa, Ds)− cQ (3–10)

E[Π] = (p̂a − ca)Xa + ps(µDs − ΛDs(Q−Xa))− cQ (3–11)

Where ΛDs is the loss function
∫∞

Q−Xa
(t−Q+Xa)fDs(t)dt and fDs(t) is the Normal pdf.

Thus, my optimization problem is to determine the optimal values for the order quantity

Q, the advance sales inventory portion Xa, the advance sales price pa and the spot price ps

such that total expected profit is maximized.

MAX

E[Π] = (p̂a − ca)Xa + ps(µDs − ΛDs(Q−Xa))− cQ (3–12)

subject to

0 ≤ Xa ≤ Q ≤ M (3–13)

Let us assume that a customer’s product valuation is a Bernoulli random variable

which can have a high value H with probability α or a low value L with probability 1− α,

as was done similarly in Xie and Shugan (2001) [5]. A customer will only buy the product

if the price is less than or equal to this valuation. In the spot period, this valuation is

realized, thus a customer will buy the product with probability Pr{ps ≤ V }. With the

Bernoulli definition of valuation, this probability is:

Pr{spot purchase} = Pr{ps ≤ V } =





0, if ps > H;

α, if ps = H;

α, if L < ps < H;

1, if ps ≤ L.

(3–14)

It is clear that it will never be profitable to offer a spot price ps > H, since no

customers would purchase. Since the probability of a spot purchase is the same for ps = H
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and L < ps < H, it would be more profitable to offer a spot price of ps = H. Offering a

spot price of ps = L would be more profitable than any price lower than L. Thus, from

this point forward I will assume that the firm considers offering a spot price ps of either

H or L, but not any value in between. I will therefore perform my analysis for these two

cases.

I can now calculate the spot demand, Ds, to be as follows.

Ds




∼ Binomial(Ns, α), if ps = H;

= Ns, if ps = L.
(3–15)

E[Ds] =





Nsα = (M −Xa)α, if ps = H;

Ns = M −Xa, if ps = L.
(3–16)

For the case when ps = H, I will approximate the Binomial with a Normal

distribution with mean µDs and σDs defined as follows.

Ds ∼ Normal(µDs , σDs)

µDs = (M −Xa)α (3–17)

σDs =
√

(M −Xa)α(1− α) (3–18)

E[β] can now be calculated as follows:

E[β] =
E[min(Q−Xa, Ds)]

E[Ds]
(3–19)

=





E[Ds−(Ds−Q+Xa)+]
E[Ds]

, if ps = H;

min(Q−Xa,M−Xa)
M−Xa

, if ps = L.
(3–20)

=





1− ΛDs (Q−Xa)

(M−Xa)α
, if ps = H;

(Q−Xa)
M−Xa

, if ps = L.
(3–21)
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Note that I evaluate min(Q − Xa,M − Xa) = Q − Xa based on the fact that

Xa ≤ Q ≤ M . Note also that I use the approximation E[β] = E[min(Q−Xa,Ds)]
E[Ds]

, although it

has been shown in the literature that this will yield larger values than the expected value

E[min(Q−Xa,Ds)
Ds

].

I now return to my definition of the maximum advance sales price, p̂a = E[V ] −
E[(V − ps)

+]E[β]. Using the Bernoulli distribution for customer valuation, I calculate the

following.

E[V ] = Hα + L(1− α) (3–22)

E[(V − ps)
+] =

H∑
v=ps

(v − ps)Pr{V = v} (3–23)

=





0, if ps = H;

(H − L)α, if ps = L.
(3–24)

Now I can express p̂a using the above definitions and the expressions for E[β] as

follows.

p̂a =





Hα + L(1− α), if ps = H;

Hα + L(1− α)− (H − L)α( Q−Xa

M−Xa
), if ps = L.

(3–25)

=





L + (H − L)α, if ps = H;

L + (H − L)α( M−Q
M−Xa

), if ps = L.
(3–26)

The expected profit E[Π] for Bernoulli customer valuations is then as follows.

E[Π] =





(L +(H − L)α− ca)Xa

+H((M −Xa)α− ΛDs(Q−Xa))− cQ, if ps = H;

(L +(H − L)α( M−Q
M−Xa

)− ca)Xa

+L(Q−Xa)− cQ, if ps = L.

(3–27)
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3.3 Analysis

3.3.1 Optimal Order Quantity Q∗(Xa)

First let us find the optimal order quantity Q∗ as a function of Xa. I will solve for

each spot price case separately (ps = L and ps = H).

For the case when ps = L, I find expected profit E[Π(L)] to be linear in Q. E[Π(L)] is

increasing in Q, under the condition −Xa(H−L)α
M−Xa

+ L− c > 0, and decreasing in Q otherwise.

I have the following theorem.

Theorem 1. For ps = L and Bernoulli customer valuations, the expected profit E[Π(L)] is

linear increasing in Q for −Xa(H−L)α
M−Xa

+ L − c > 0. Thus the optimal order quantity Q∗ for

a given Xa and ps = L is:

Q∗(Xa, L) =





M, if (H−L)α
L−c

< M−Xa

Xa
,

0, otherwise.
(3–28)

(See Appendix A for the proof.)

That is, for a low spot price, when the above condition is met, the optimal order

quantity is equal to the entire market. Otherwise I do not order anything. This ”all or

nothing” result is due to the Bernoulli customer valuation and low spot price. When the

spot price is low (ps = L), the advance sales price is also low (p̂a = L). Thus, I order

enough for the entire market since everyone will buy.

In the case when ps = H, I find expected profit E[Π(H)] to be concave in Q with the

optimal inventory size Q∗(Xa, H) as follows.

Theorem 2. For ps = H and Bernoulli customer valuations, the expected profit E[Π(H)]

is concave in Q and the optimal order quantity Q∗ for a given Xa and ps = H is:

Q∗(Xa, H) = F−1
Ds

(
H − c

H
) + Xa (3–29)

(See Appendix A for the proof.)
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In this case, since the spot price is high, I cannot be certain how many customers will

buy in the spot period. That is, I may have customers in the spot period with a realized

valuation lower than H. I see that Q∗(Xa, H) resembles the standard newsvendor solution,

which captures the effect of this demand uncertainty, with an additional quantity for the

advance sales inventory, Xa.

Thus I have found the optimal order quantity Q∗ as a function of Xa to be:

Q∗(Xa) =





F−1
Ds

(H−c
H

) + Xa, if ps = H;

M, if ps = L and (H−L)α
L−c

< M−Xa

Xa
,

0, if ps = L, otherwise.

(3–30)

3.3.2 Optimal Advance Sales Inventory X∗
a(Q)

Now let us find the optimal advance sales inventory quantity X∗
a as a function of Q. I

will solve for each spot price case separately (ps = L and ps = H).

For ps = L, I find expected profit E[Π(L)] to be convex in Xa. Since I want to

maximize expected profit, the optimal advance sales inventory X∗
a(Q, L) is thus an

extreme point solution, with 0 ≤ Xa(L) ≤ Q.

Theorem 3. For ps = L and Bernoulli customer valuations, the expected profit E[Π(L)] is

convex in Xa. Thus the optimal advance sales inventory level X∗
a for a given Q and ps = L

is an extreme point solution.

X∗
a(Q,L) =





Q, if (H − L)α ≥ ca,

0, otherwise.
(3–31)

(See Appendix A for the proof.)

Since I have an extreme point solution, I either reserve all of my order quantity for

advance sales or I do not advance sell at all. The above condition states that as long as

the cost of advance selling is relatively low, I will advance sell to everyone. This seems
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reasonable since the spot price is low. Thus, there is no advantage to reserving inventory

for the spot period if I can sell everything for the same price in the advance sales period.

For ps = H, I also find the optimal advance sales inventory X∗
a(Q,H) to be an

extreme point solution, with 0 ≤ Xa(H) ≤ Q.

Theorem 4. For ps = H and Bernoulli customer valuations, the optimal advance sales

inventory level X∗
a for a given Q and ps = H is an extreme point solution.

X∗
a(Q,H) =





Q, if Q[L(1− α)− ca] ≥ H[µDs − ΛDs(Q)],

0, otherwise.
(3–32)

Under the following conditions.

c ≤ 0.31H (3–33)

σDs ≤ 1

4
k − 1

8
(3–34)

αLB ≤ α ≤ αUB (3–35)

where

αLB =





1−
√

1− σDs
k−1/2

2
, for c

H
≥ 0.00169

1− µDs (2µDs+3kσDs )−2

k2µDs
, otherwise

(3–36)

αUB =
1 +

√
1− σDs

k−1/2

2
(3–37)

(See Appendix A for the proof.)

Again, since I have an extreme point solution, I either reserve all of my order quantity

for advance sales or offer no advance sales at all. The condition for advance selling all of

the order quantity is dependent on how uncertain the spot demand is. That is, the lower

the chance of earning sales in the spot period, the riskier it is to reserve more spot sales,

despite the high spot price. Thus it is more profitable to advance sell all of my inventory.
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Note that the condition for αLB =
1−

√
1− σDs

k−1/2

2
of c

H
≥ 0.00169 implies that σDs ≤

0.61. That is, for higher cost values, or cost values closer to H, the variance of the spot

demand must be small for this lower bound on α to hold. This αLB value is increasing

in the ratio
µDs

σDs
, creating a tighter bound. The opposite is true for the other value of

αLB = 1 − µDs (2µDs+3kσDs )−2

k2µDs
. In this case, the cost is relatively insignificant ( c

H
≤ 0.00169)

and the variance of the spot demand can be much higher (σDs ≥ 0.61) for the lower bound

to hold. This αLB value is decreasing in the ratio
µDs

σDs
, creating a looser bound. The αUB

value is decreasing in the ratio
µDs

σDs
, creating a tighter bound.

Thus I have found the optimal advance sales inventory X∗
a as a function of Q to be:

X∗
a(Q) =





Q, if ps = H and [L(1− α)− ca]Q ≥ H[ΛDs(0)− ΛDs(Q)];

0, if ps = H, otherwise;

Q, if ps = L and (H − L)α ≥ ca

0, if ps = L, otherwise.

(3–38)

3.3.3 Optimal Order Policy (Q∗, X∗
a)

To find the optimal order policy (Q∗, X∗
a), I will use the variable substitution method

common in the price-dependent newsvendor literature (see Petruzzi and Dada (1999) [33]).

I will replace Q in the expected profit expression with the solution for Q∗(Xa) found in

section 3.3.1. I will then use the first order condition of E[Π(Q∗)] to solve for X∗
a .

For the case when ps = L, if conditions hold for Q∗(Xa, L) = M , I find that

E[Π(Q∗(L))] is linearly decreasing in Xa. Thus X∗
a(L) = 0 and I do not advance sell. If

conditions hold for Q∗(Xa, L) = 0, then I know X∗
a(L) = 0 since Xa ≤ Q ≤ M . Thus,

I conclude that if ps = L it is never optimal to advance sell. To determine the optimal

inventory policy, I compare the profit earned from a (Q,Xa) = (M, 0) policy with that

from a (0, 0) policy. Clearly, for the ps = L case, I have maximum profit with the (M, 0)

policy.
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Theorem 5. For ps = L and Bernoulli customer valuations, the optimal order policy is:

(Q∗(L), X∗
a(L)) = (M, 0) (3–39)

(See Appendix A for the proof.)

Thus, when the spot price is low, it is optimal to order for the entire market but not

offer any advance sales.

For the case when ps = H I again find an extreme point solution for X∗
a(H).

However, since Q∗(Xa, H) is a function of Xa (refer to equation 3–29) and Q ≤ M , I

do not have an upper bound of Xa ≤ Q, but rather Xa ≤ M − αk2

(1−α)
, where I define

k =
√

2erf−1(2(H−c
H

)− 1) as a constant (here, erf is the error function). Thus, I have two

possible order policies (Q,Xa) for ps = H: (M, M − αk2

(1−α)
) and (F−1

Ds
(H−c

H
), 0). The optimal

policy is determined from the following condition.

Theorem 6. For ps = H and Bernoulli customer valuations, the optimal order policy is:

(Q∗(H), X∗
a(H)) =





(M, M − αk2

(1−α)
), if L(1− α) + c ≥ ca,

(F−1
Ds

(H−c
H

), 0), otherwise.
(3–40)

(See Appendix A for the proof.)

Therefore, when the spot price is high, if the advance sales cost is relatively low, it

is optimal to order for the entire market reserve almost all of this inventory for advance

selling. Otherwise, I order the standard newsvendor quantity and do not offer any advance

sales.

I can write the optimal order policy as follows.

(Q∗, X∗
a) =





(M, M − αk2

(1−α)
), if ps = H and L(1− α) + c ≥ ca

(F−1
Ds

(H−c
H

), 0), if ps = H, otherwise,

(M, 0), if ps = L.

(3–41)
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3.3.4 Optimal Pricing Strategy (p∗a, p
∗
s)

From my utility analysis of the customer’s decision of whether or not to advance

purchase, I concluded that a customer will advance purchase iff pa ≤ p̂a (refer to equation

3–9). Therefore, since p̂a is the maximum price I can offer in the advance sales period in

order to earn Xa sales, the optimal advance sales price is p∗a = p̂a.

Theorem 7. The optimal advance sales price p∗a is equivalent to the maximum advance

sales price p̂a. For Bernoulli customer valuations, this optimal price is as follows.

p∗a = p̂a =





L + (H − L)α, if ps = H;

L + (H − L)α( M−Q
M−Xa

), if ps = L.
(3–42)

To determine the optimal spot price p∗s, I compare the expected profit from each

price case (H or L) under the respective optimal order policy: E[Π(Q∗(L), X∗
a(L))] and

E[Π(Q∗(H), X∗
a(H))]. I have the following.

E[Π(Q∗(L), X∗
a(L))] = (L− c)M (3–43)

E[Π(Q∗(H), X∗
a(H))] = (L + (H − L)α− ca)X

∗
a(H)

+H((M −X∗
a(H))α− ΛDs(F

−1
Ds

(
H − c

H
)))

−c(F−1
Ds

(
H − c

H
) + X∗

a(H)) (3–44)

I then have optimal spot price p∗s = H when E[Π(Q∗(H), X∗
a(H))] > E[Π(Q∗(L), X∗

a(L))]

and p∗s = L otherwise.

If I re-examine the optimal advance sales price p∗a for ps = L given the optimal order

policy (Q∗(L), X∗
a(L)) = (M, 0), I have p∗a = L. That is, if the spot price is ps = L,

then the advance sales price will also be pa = L. This explains the previous result for

X∗
a(L) = 0 (see 3–39). That is, if the spot price is ps = L then I do not advance sell since

the probability of customers spot purchasing is 1 (see 3–14) and there is no extra revenue

to be earned from advance sales (pa = ps = L). Thus I can write the optimal pricing policy
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as follows.

(p∗a, p
∗
s) =





(L + (H − L)α,H), if E[Π(Q∗(H), X∗
a(H))]

> E[Π(Q∗(L), X∗
a(L))],

(L,L), otherwise.

(3–45)

Where the optimal advance sales price p∗a when ps = H is simply the customer’s

expected future valuation, E[V ], as defined in equation 3–22. Thus, if the expected profit

from offering a high spot price is higher than the expected profit from offering a low spot

price, the optimal pricing strategy is a high spot price and an advance sales price equal

to the expected customer valuation. If the expected profit from a low spot price is higher,

then the optimal pricing strategy is to offer a low price in both periods.

3.4 Numerical Experiments

I perform several numerical experiments to analyze the sensitivity of my analytical

results to the customer valuation parameters α, H, and L, and to better understand

the behavior of expected profit in the advance sales inventory decision, Xa. In these

experiments, I use the variable substitution for Q∗(Xa, H) to maximize E[Π(Q∗(Xa, H))]

by setting Xa as the decision variable. Finding the optimal advance sales inventory then

determines the optimal value of Q∗(Xa, H) (which is a function of X∗
a(H)). Thus, I focus

on values for X∗
a , Q∗, and expected profit E[Π] for ps = H.

I perform a sensitivity analysis on the effect of the valuation probability α and the

spread between the high and low valuation levels (H − L spread) on the optimal values

Q∗, X∗
a , and the expected profit. I also examine the effect on the percent of advance sales

inventory (%AdvInv = X∗
a/Q∗).

I assume the following parameters to be constant: advance sales cost, ca = 5, unit

cost, c = 3, and market size, M = 100. I vary the values of the valuation probability α

between 0.1 and 0.9. I initially set H = 80 and L = 20. This yields the pricing policy

ps = H = 80 and pa = p̂a = 62. I then vary the H − L spread such that the advance sales

price pa = p̂a remains fixed at this value.
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α H L p^a Q(H) Xa(H) Xs(H) % Adv Inv E[Π(H)] 

0.1 80 20 26 100.00 99.65 0.35 99.65% 1795.20 
0.2 80 20 32 100.00 99.21 0.79 99.21% 2390.90 
0.3 80 20 38 100.00 98.64 0.36 99.641% 2987.100 
0.4 80 20 44 100.00 97.89 2.11 97.887% 3584.400 
0.5 80 20 50 100.00 96.83 3.17 96.830% 4183.100 
0.6 80 20 56 100.00 95.25 4.76 95.245% 4784.500 
0.7 80 20 62 100.00 92.60 7.40 92.603% 5391.100 
0.72 80 20 63.2 100.00 91.85 8.15 91.85% 5513.60 

0.72125 80 20 63.275 100.00 91.20 8.80 91.20% 5521.20 
0.7215625 80 20 63.29375 80.00 0.00 80.00 0.00% 5526.70 
0.721875 80 20 63.3125 80.17 0.00 80.17 0.00% 5529.10 

0.725 80 20 63.5 80.45 0.00 80.45 0.00% 5553.30 
0.75 80 20 65 82.71 0.00 82.71 0.00% 5746.70 
0.8 80 20 68 87.12 0.00 87.12 0.00% 6133.80 
0.9 80 20 74 95.34 0.00 95.34 0.00% 6910.40 

 Table 3-1. Sensitivity Analysis for Varying α Values

As the valuation probability α changes, I see the results shown in Table 3-1 for Q∗,

X∗
a , Xs = Q − Xa, E[Π], and %AdvInv = X∗

a/Q∗. I can make several observations.

As α increases, Q∗ is constant while X∗
a > 0, then Q∗ increases after X∗

a = 0. Also, as

α increases, X∗
a decreases as it becomes more profitable to reserve spot sales when the

probability of a high spot price purchase increases. I can also observe that as α increases,

the expected profit increases. This is due to more spot sales, which have a higher potential

revenue (ps = H > pa).

The behavior of E[Π] in Xa can be seen in the graphs in Figure 3-2, corresponding to

the α values between 0.6 and 0.8 from the table in Table 3-1. From these graphs I confirm

the extreme point solution for Xa. This behavior implies a ”go/no-go” decision for offering

advance sales. I can see that there is some threshold α value above which advance sales

are no longer profitable. That is, once customers have a high enough probability of spot

purchasing, it is more profitable to face the risk of holding all inventory for spot sales since

again I have ps = H > pa.

As the H − L Spread changes, while keeping the advance sales price pa = p̂a

the same, I see the results shown in Table 3-2 for Q∗, X∗
a , Xs = Q − Xa, E[Π], and
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Figure 3-2. Graphs of Xa vs. E[Π] for Varying α Values

%AdvInv = X∗
a/Q∗. As the H − L Spread decreases, I observe Q∗ to be decreasing while

Xa = 0 and then constant for Xa = 0. As the H − L Spread decreases, I observe X∗
a to be

increasing. X∗
a increases because the benefit of reserving spot sales decreases as the H − L

Spread decreases. That is, the spot price and advance sales price become close enough to

outweigh the benefit of higher revenue for the uncertain spot sales. I can also observe that

as the H − L Spread decreases, the expected profit decreases. This is due to smaller price

values.

The behavior of E[Π] in Xa can be seen in the graphs in Figure 3-3, corresponding to

the H − L Spread values corresponding to the H values between 80.4 and 80.8 from the

table in Table 3-2. From these graphs I can again confirm the extreme point solution for

Xa implying a ”go/no-go” decision for offering advance sales. I can see that there is some
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α H L H_L_Spread p^a Q(H) Xa(H) Xs(H) % Adv Inv E[Π(H)] 

0.7 84.3 10 74.30 62 78.27 0.00 78.27 0.00% 5660.70 
0.7 82.1 15 67.10 62 78.21 0.00 78.21 0.00% 5506.90 
0.7 81.7 16 65.70 62 78.203 0.000 78.20 0.000% 5478.900 
0.7 81.3 17 64.30 62 78.193 0.000 78.19 0.000% 5450.900 
0.7 80.8 18 62.80 62 78.180 0.000 78.18 0.000% 5416.000 
0.7 80.6 18.5 62.10 62 78.175 0.000 78.18 0.000% 5402.000 
0.7 80.4 19 61.40 62 100.000 92.584 7.42 92.584% 5391.300 
0.7 80 20 60.00 62 100.00 92.60 7.40 92.60% 5391.10 
0.7 77.8 25 52.80 62 100.00 92.71 7.29 92.71% 5376.30 
0.7 75.7 30 45.70 62 100.00 92.81 7.19 92.81% 5368.80 
0.7 73.5 35 38.50 62 100.00 92.93 7.08 92.93% 5354.60 
0.7 71.4 40 31.40 62 100.00 93.04 6.97 93.04% 5347.80 
0.7 69.3 45 24.30 62 100.00 93.15 6.85 93.15% 5341.30 
0.7 67.1 50 17.10 62 100.00 93.27 6.73 93.27% 5328.20 
0.7 65 55 10.00 62 100.00 93.39 6.61 93.39% 5322.50 
0.7 62.8 60 2.80 62 100.00 93.52 6.48 93.52% 5310.30 

 Table 3-2. Sensitivity Analysis for Varying H − L Spread Values

 
 

Figure 3-3. Graphs of Xa vs. E[Π] for Varying H − L Spread Values

threshold H − L Spread value above which advance sales are no longer profitable. That is,

once the H − L spread is large enough, it is more profitable to face the risk of holding all

inventory for spot sales since I have ps = H becoming increasingly larger than pa.

I can compare the change in expected profit to the change in α values and H − L

Spread values to determine which parameter has the more sensitive effect. From the

results shown in Table 3-3, it is clear that the maximum expected profit is more sensitive

to the valuation probability α than to the H − L Spread for the parameter values in the

trials performed in Table 3-1 and Table 3-2.

39



www.manaraa.com

 α E[Π(H)] H-L Spread E[Π(H)] 

max 0.9 6910.4 74.3 5660.7 
min 0.1 1795.2 2.8 5310.3 

% change 50.00% 44.43% 2553.57% 6.60% 
sensitivity 88.87%   0.26%   

 Table 3-3. Sensitivity Comparison of α vs. H − L Spread Values

This may motivate a discussion on whether or not the firm can set these parameter

values. For a Bernoulli distributed customer valuation, can a firm choose the probability

of a high valuation, α? For this distribution, would α actually be some function of the

parameters H and L? Can the firm set these values, and thus the H − L Spread values,

or are these determined by the market? In Section 3.5, I explore what would happen if

the customer valuation distribution was Uniform instead of Bernoulli. In any case, if the

firm is not able to effect the valuation distribution parameters, it can still determine the

optimal order and pricing policy from the results of my model analysis.

3.5 An Extension

Let us consider the sensitivity of my results to the customer valuation distribution,

specifically what happens if the customer valuation distribution is Uniform instead

of Bernoulli. Assume that a customer’s product valuation is distributed according to

a continuous Uniform distribution between the low and high values (L,H). Now the

probability that a customer will buy the product in the spot period is Pr{ps ≤ V } =

H−ps

H−L
. I will use the expression F̄V (ps) to represent this spot purchase probability. Now

I can consider any spot price L ≤ ps < H since I have the following spot purchase

probabilities.

Pr{spot purchase} = Pr{ps ≤ V } =





0, if ps = H;

H−ps

H−L
, if L < ps < H;

1, if ps = L.

(3–46)
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I now have spot demand Ds distributed as follows.

Ds ∼ Binomial(Ns = (M −Xa), F̄V (ps)) (3–47)

E[Ds] = (M −Xa)F̄V (ps) (3–48)

I will again approximate the Binomial spot demand with a Normal distribution. I

define the mean and the standard deviation as follows.

µDs = (M −Xa)F̄V (ps) (3–49)

σDs =
√

(M −Xa)F̄V (ps)FV (ps) (3–50)

I can then calculate the expected probability of available inventory β as follows.

E[β] =
E[min(Q−Xa, Ds)

E[Ds]
(3–51)

= 1− ΛDs(Q−Xa)

(M −Xa)F̄V (ps)
(3–52)

Where ΛDs is the loss function
∫∞

Q−Xa
(t − Q + Xa)fDs(t)dt and fDs(t) is the Normal

pdf with µDs and σDs as defined in 3–49 and 3–50.

I can now calculate the components of the customer’s utility evaluation for an

advance sales purchase, E[Ua] and E[Us] as follows.

E[V ] =
H + L

2
(3–53)

E[(V − ps)
+] =

∫ H

ps

(t− ps)fV (t)dt (3–54)

=
1

H − L

∫ H

ps

(t− ps)dt (3–55)

=
(H − ps)

2

2(H − L)
(3–56)

Where E[V ] and fV (t) are calculated from the continuous Uniform distribution.
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The maximum advance sales price p̂a is then.

p̂a = E[V ]− E[(V − ps)
+]E[β] (3–57)

=
H + L

2
− (H − ps)

2

2(H − L)
+

ΛDs(Q−Xa)(H − ps)

2(M −Xa)
(3–58)

I can now write the expected profit expression as follows.

E[Π] = (
H + L

2
− (H − ps)

2

2(H − L)
+

ΛDs(Q−Xa)(H − ps)

2(M −Xa)
− ca)Xa

+ps((M −Xa)
H − ps

H − L
− ΛDs(Q−Xa))− cQ (3–59)

I then solve for the optimal inventory quantity Q∗ as a function of Xa.

Theorem 8. For Uniform customer valuations, the expected profit E[Π] is concave in Q

and the optimal order quantity Q∗ for a given Xa is:

Q∗ = F−1
Ds

(
ps − c− Xa(H−ps)

2(M−Xa)

ps − Xa(H−ps)
2(M−Xa)

) + Xa (3–60)

(See Appendix A for the proof.)

I find a result that resembles the newsvendor model I found previously (see 3.3.1),

except this time with a smaller value. That is, F−1
Ds

(
ps−c−Xa(H−ps)

2(M−Xa)

ps−Xa(H−ps)
2(M−Xa)

) < F−1
Ds

(H−c
H

).

To find X∗
a , I perform similar numerical experiments as done in Section 3.4. In these

experiments, I again use the variable substitution for Q∗ to maximize E[Π(Q∗)] by setting

X∗
a as the decision variable. For these trials, I fix the advance sales cost, ca = 5, unit

cost, c = 3, and market size, M = 100. Then, since I do not know the spot price ps, I set

H = 80 and L = 20 and compare the results for the spot price values L < ps < H.

As the spot price ps changes, for H = 80 and L = 20, I see the results shown in

Table 3-4 for Q∗, X∗
a , Xs = Q − Xa, E[Π], and %AdvInv = X∗

a/Q∗. As ps decreases, Q∗

is decreasing while X∗
a > 0, then Q∗ increases after X∗

a = 0. Also, as ps decreases, X∗
a

decreases and the expected profit decreases. The values of X∗
a and E[Π] are higher with

larger ps values since a larger spot price creates a larger advance sales price pa = p̂a.
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ps Fv p^a Q Xa Xs % Adv Inv E[Π] 

79 0.02 50.02 99.33 99.32 0.01 1.00 4171.20 
69 0.18 49.99 92.33 92.27 0.06 1.00 3875.20 
59 0.35 49.08 85.59 84.20 1.39 0.98 3536.40 
49 0.52 45.92 81.43 74.79 6.64 0.92 3141.30 
39 0.68 40.26 80.96 63.71 17.25 0.79 2676.00 

29 0.85 28.37 89.51 0.00 89.51 0.00 2191.40 
21 0.98 21.02 99.70 0.00 99.70 0.00 1763.90 

 Table 3-4. Sensitivity Analysis for Varying ps Values (V ∼ Uniform(20, 80))

 

Figure 3-4. Graph of Xa vs. E[Π] (V ∼ Uniform(20, 80))

I can conclude that the largest profit is attained when ps is maximum. Thus I have

an optimal pricing policy of (p∗s ≈ H, p∗a = p̂a(p
∗
s)) and an optimal order policy of

(Q∗ = F−1
Ds

(H−c
H

) + X∗
a , X∗

a). That is, I use the high ps value to drive up the value of

pa. Since the probability of spot purchase, F̄V (ps), becomes very low with such a high ps

value, I advance sell to everyone at pa.

The behavior of E[Π] in Xa can be seen in the graphs in Figure 3-4. From these

graphs I observe the extreme point solution for Xa. I can see that there is some threshold

ps value below which advance sales are no longer profitable. I find similar results for

various H and L values.

Let us try to compare these results to the case with Bernoulli customer valuations. In

the first set of trials in Section 3.4, shown in Table 3-1,I set H = 80 and L = 20 and vary

the α values (where α is the probability of a spot purchase when ps = H). In the case of

Uniform customer valuations, the probability of a spot purchase, F̄V (ps) is a function of
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ps. In order to compare my results with the Bernoulli customer valuation case, I must set

ps ≈ H, which yields a very low value for F̄V (ps). Therefore, I can compare the first row

in Table 3-1 with the first row in Table 3-4. I can observe the following. The advance sales

price pa = p̂a is higher in the Uniform case than in the Bernoulli case. The inventory levels

Q and Xa are both high. The expected profit E[Π] is higher in the Uniform case than in

the Bernoulli case. Thus I can observe that for ps = H and H = 80, L = 20, and α or

F̄V (ps) very low, I have similar inventory policies but higher profit in the Uniform case.

To further compare these two customer valuation distributions, I repeat the trials for

various H − L Spread values, this time with the same spot price and spot purchase

probability values. Since I examine the case when ps = H for Bernoulli customer

valuations, I want to only compare the Uniform customer valuation trials for ps ≈ H,

or ps = H − 1. Then, since the probability of a spot purchase for Uniform customer

valuations, F̄V (ps), is affected by the price ps, I will set the Bernoulli spot purchase

probability α = F̄V (ps) for a fair comparison. I thus compare the trials shown in Table 3-5.

I observe that as the H − L Spread decreases, the optimal advance sales inventory

X∗
a decreases in both cases. The optimal order quantity Q∗ is decreasing in the Uniform

case, but constant in the Bernoulli case. This difference can be explained by the difference

in the Q∗ expression described earlier, where I have Q∗ for the Uniform case smaller than

Q∗ for the Bernoulli case (see Theorem 8). The main difference between these valuation

cases is in the behavior of the expected profit. In the Uniform case, I have expected profit

E[Π] decreasing as the H − L Spread decreases, whereas in the Bernoulli case, E[Π]

is increasing. This difference is attributed to the calculation of pa = p̂a. Since Xa is

high in both cases, most of the profit comes from advance sales, and thus is affected by

the advance sales price pa. In the Uniform case, the advance sales price, when the spot

price is high (ps ≈ H), is the expected valuation E[V ] = H+L
2

which is constant. In the

Bernoulli case, the advance sales price is also the expected valuation, but in this case

E[V ] = Hα + L(1 − α) is a function of α. Therefore, I have expected profit increasing
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Uniform Customer Valuations 

ps=H-1 Fv H L H_L_Spread p^a Q Xa Xs 
% Adv 

Inv E[Π] 

89 0.01 90 10 80.00 50.02 99.41 99.40 0.01 99.99% 4174.60 
84 0.01 85 15 70.00 50.02 99.37 99.36 0.01 99.99% 4172.90 
79 0.02 80 20 60.00 50.02 99.33 99.32 0.01 99.99% 4171.20 
74 0.02 75 25 50.00 50.02 99.28 99.27 0.01 99.99% 4169.10 
69 0.03 70 30 40.00 50.02 99.23 99.22 0.01 99.99% 4167.00 
64 0.03 65 35 30.00 50.02 99.16 99.15 0.01 99.99% 4164.00 
59 0.05 60 40 20.00 50.03 99.10 99.08 0.02 99.98% 4161.00 
54 0.10 55 45 10.00 50.03 99.01 98.99 0.02 99.98% 4157.20 

 
Bernoulli Customer Valuations 

ps=H α H L H_L_Spread p^a Q(H) Xa(H) Xs(H) 
% Adv 

Inv E[Π(H)] 

90 0.01 90 10 80.00 11 100.00 99.96 0.04 99.96% 279.81 
85 0.01 85 15 70.00 16 100.00 99.96 0.04 99.96% 769.65 
80 0.02 80 20 60.00 21 100.00 99.93 0.07 99.93% 1319.00 
75 0.02 75 25 50.00 26 100.00 99.93 0.07 99.93% 1798.70 
70 0.03 70 30 40.00 31 100.00 99.91 0.09 99.91% 2317.70 
65 0.03 65 35 30.00 36 100.00 99.91 0.09 99.91% 2787.40 
60 0.05 60 40 20.00 41 100.00 99.85 0.15 99.85% 3295.20 
55 0.10 55 45 10.00 46 100.00 99.71 0.29 99.71% 3789.70 

 Table 3-5. Sensitivity Analysis for Varying H − L Spread Values for Uniform and
Bernoulli Customer Valuations

as the H − L Spread decreases for the Bernoulli case because the advance sales price is

increasing.

Thus, if the customer valuation distribution is different, the structural results hold

(extreme point solution for Xa, Q∗ has a newsvendor component plus Xa), but the

sensitivity to the valuation distribution parameters may vary.

Please refer to Chapter 6 for the related conclusions and future research extensions.
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CHAPTER 4
MULTI-GENERATION PRICING AND TIMING DECISIONS IN NEW PRODUCT

DEVELOPMENT

4.1 Introduction and Motivation

The analytic model introduced here utilizes a two generation framework and

incorporates elements from dynamic pricing and time-to-market bodies of literature.

my key decision variables are the dynamic pricing strategy for each generation of products

and the optimal time to introduce the second generation of products. A main factor

influencing these decisions is the anticipated shape of the demand/sales curve for each

generation of new products. For example, the product life cycle curve is often associated

with the introduction, growth and decline of a product in the marketplace via some kind

of diffusion process. Conversely, a common assumption in the literature addressing the

optimal time-to-market for new product introductions is that price (and consequently

sales) is static for both old and new generations of products. Other factors included in

the model are the dynamic unit costs for each generation as well as the development costs

associated with the second generation of new products.

I utilize optimal control methodologies to characterize the optimal pricing strategy for

both generations and the timing for the introduction of the second generation. Analytic

results for specific cases reflecting different assumptions concerning the demand process are

developed which directly link the price and timing decisions. When sales are dependent

on price only (i.e. no diffusion effects), the optimal policy is to introduce only the single

most profitable generations of products in most situations. Specifically, I either introduce

the second generation at the start of the planning horizon, or not at all (i.e. a now or

never policy). When sales are dependent on diffusion only (i.e. not a direct function of

price), then the optimal timing of introduction of the second generation of products is

dependent on the length of the planning horizon. I derive a threshold value such that if

the length of the planning horizon is smaller than the threshold, then a single generation

solution is optimal. If the length of the planning horizon exceeds the threshold value, then
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it is optimal to introduce both generations to market in a sequential manner. In this case,

the optimal time to market for the second generation is dependent on the price, cost, and

diffusion parameters for both generations of products.

Please refer to the Chapter 2 for a review of the related literature.

4.2 Model

My model considers two generations of a new product: Generation 1 and Generation

2. I assume that sales for Generation 1 start at time 0, while the market entry time

for Generation 2 is a decision variable in the model. I want to determine the optimal

dynamic price of each generation, p∗1(t) and p∗2(t), as well as the optimal time to introduce

Generation 2 to the market, t∗m.

I consider a single rollover scenario where the sales for Generation 1 will stop once

Generation 2 is introduced to the market. Both price and cost are dynamic variables

in my model. I also include a fixed cost for introducing Generation 2 to the market,

ctm which is a one-time fixed cost incurred if and when I introduce Generation 2 to the

market. This cost may be attributed to development needs or marketing expenses. I

assume that the firm has a fixed time horizon, T . Although I consider the time horizon to

be exogenous, I will discuss later the effect of its value on the optimal introduction time of

Generation 2.

Thus, I have the following decision variables:

p1(t) unit price at time t of current Generation 1

p2(t) unit price at time t of current Generation 2

tm time at which Generation 2 is introduced to the market

And I define the following notation:
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T length of the planning horizon

c1(t) unit cost at time t of current Generation 1

c2(t) unit cost at time t of current Generation 2

ctm fixed cost of introducing Generation 2 to the market at time tm

ẋ1(t) sales rate at time t of Generation 1

ẋ2(t) sales rate at time t of Generation 2

x1(t) cumulative sales in the time interval (0, t) of Generation 1

x2(t) cumulative sales in the time interval (0, t) of Generation 2

λ1(t) marginal value of selling one unit of Generation 1

λ2(t) marginal value of selling one unit of Generation 2

λ3(t) marginal value of introducing Generation 2 to the market

Y (t) binary indicator variable corresponding to time-to-market

Y (t) =





0, t < tm,

1, t ≥ tm.

v(t) impulse variable corresponding to time-to-market

v(t) =





1, t = tm,

0, otherwise.

δ the dirac delta function

My objective is to determine the optimal prices for the two generations and the

optimal introduction time for the second generation such that total profit is maximized

over the time horizon. The objective function is stated mathematically in Equation

4–1. I define total profit as the net revenue for both generations earned over the time

horizon, minus the cost of introduction to market for the second generation. Note that

I ignore discounting in my model. This is done for clarity purposes. I desire to focus on

the optimal pricing and timing decisions derived from a simple expression of profit. I have

conducted my analysis for the discounting case and find similar results. Thus, for the

scope of this chapter I will assume there is no discounting, although my results hold for
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the discounting case.

Max

∫ T

0

(ẋ1(t)(p1(t)− c1(t)) + ẋ2(t)(p2(t)− c2(t)))dt− ctmv(tm) (4–1)

s.t. λ1(t) : ẋ1(t) = f(x1(t), p1(t))(1− Y (t)) (4–2)

λ2(t) : ẋ2(t) = g(x2(t), p2(t))Y (t) (4–3)

λ3(t) : Ẏ (t) = δ(t− tm)v(t) (4–4)

The constraint in Equation 4–2 defines the sales rate for Generation 1. Since my

binary indicator variable Y (t) is initially 0, the sales rate for Generation 1 is positive for

t < tm and 0 thereafter. The marginal value of selling one more unit of Generation 1,

λ1(t), will later be derived from this constraint. Likewise, the constraint in Equation 4–3

defines the sales rate for the second generation. Based on the binary indicator variable

Y (t), the sales rate for the second generation is 0 for t < tm and positive thereafter. The

marginal value of selling one more unit of Generation 2, λ2(t), will later be derived from

this constraint. The third constraint in Equation 4–4 defines the rate of change of the

binary indicator variable in terms of the impulse variable and the dirac delta function.

The marginal value of introducing Generation 2 to the market, λ3(t), will later be derived

from this constraint.

I solve this model using Optimal Control Theory, which is a non-linear optimization

methodology utilized for dynamic economic problems. For a summary of the methodology

and applications, refer to Sethi and Thompson (2000) for details. For my model, the

control variables are the prices for each generation: p1(t) and p2(t). The state variables

are the cumulative sales for each generation: x1(t) and x2(t). The adjoint variables are

the three marginal values defined in the problem constraints: λ1(t), λ2(t) and λ3(t). The

impulse control variable, v(tm), is used to find the optimal time to market, t∗m. I define the

Hamiltonian and Impulse Hamiltonian as follows (henceforth, I remove the time variable

for clarity).
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H = (p1 − c1 + λ1)f(x1, p1)(1− Y ) + (p2 − c2 + λ2)g(x2, p2)Y (4–5)

HI = (λ3 − ctm)v(tm) (4–6)

I derive the following expressions utilizing the necessary conditions for optimality.

The first expressions below are for the adjoint variables, which for my model are defined

as the rates of change for the marginal values associated with the cumulative sales for each

generation x1(t) and x2(t).

λ̇1 =
−δH

δx1

= −(p1 − c1 + λ1)
δf

δx1

(1− Y ) (4–7)

=




−(p1 − c1 + λ1)

δf
δx1

, t < tm,

0, t ≥ tm.
(4–8)

λ̇2 =
−δH

δx2

= −(p2 − c2 + λ2)
δg

δx2

Y (4–9)

=





0, t < tm,

−(p2 − c2 + λ2)
δg
δx2

, t ≥ tm.
(4–10)

λ̇3 =
−δH

δY
= (p1 − c1 + λ1)f(x1, p1)− (p2 − c2 + λ2)g(x2, p2) (4–11)

Note that since I do not have any salvage value in my objective function expression, I

have λ1(T ) = 0, λ2(T ) = 0, and λ3(T ) = 0.
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The next expressions correspond to the continuous control variables, which in my

model are the optimal price for each generation.

p∗1 :
δH

δp1

= 0 (4–12)

f(x1, p1) + (p1 − c1 + λ1)
δf

δp1

= 0 (4–13)

p∗2 :
δH

δp2

= 0 (4–14)

g(x2, p2) + (p2 − c2 + λ2)
δg

δp2

= 0 (4–15)

Notice that the optimal dynamic prices depend on the functional forms of the sales

rates for each generation.

The next expressions correspond to the impulse control variable, in my model the

optimal time to market for Generation 2.

v∗(tm) :
δHI

δv(tm)
= 0 (4–16)

δHI

δv
= λ3 − ctm (4–17)

v∗(tm) =





1, λ3 ≥ ctm ,

0, λ3 < ctm .
(4–18)

t∗m : v∗(t∗m) = 1 ⇒ λ3(t
∗
m) ≥ ct∗m (4–19)

I can interpret this expression as follows: I only introduce Generation 2 if the marginal

value outweighs the introduction to market cost. Notice that the optimal time to market

will depend on the shape of λ3(tm) and its value relative to the fixed costs.

4.3 Analysis

To complete my analysis, I assume the following functional forms for f(x1, p) and

g(x2, p), the sales rates for Generation 1 and 2, respectively. These functional forms

capture the inverse relationship between price and sales and the Bass Model behavior of

sales diffusion considering innovators and imitators. Specifically, I assume that the forms
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are linear additive functions of price and sales diffusion. (Refer to Padmanabhan and Bass

(1993) [17], Teng and Thompson (1996) [16], Mahajan, Muller, and Bass (1990) [34], and

Kalish (1983) [12] for similar functions.)

f(x1, p1) = a0 − a1p1 + a2[φ(M1 − x1) +
ψ

M1

(M1 − x1)x1] (4–20)

g(x2, p2) = b0 − b1p2 + b2[φ(M2 − x2) +
ψ

M2

(M2 − x2)x2] (4–21)

Furthermore, I define the following variables associated with the sales functions:

a0, a1, a2 positive constants

b0, b1, b2 positive constants

M1 market size of Generation 1

M2 market size of Generation 2

φ coefficient of innovation

ψ coefficient of imitation

In the following subsections, I analyze special cases of these functions.

4.3.1 CASE 1: Price Effect Only, No Diffusion Effect

First I consider the isolated effect of price on sales. Let us assume that a2 = b2 = 0

such that there are no diffusion effects impacting the sales function. The sales rate

functions can then be written as follows:

f(x1, p1) = a0 − a1p1 (4–22)

g(x2, p2) = b0 − b1p2 (4–23)

Theorem 1: Optimal Prices for CASE 1 When the sales function includes prices effect

only, the optimal price p∗1 for Generation 1 and p∗2 for Generation 2 are:

p∗1 =
1
2
(
a0

a1
+ c1) (4–24)

p∗2 =
1
2
(
b0

b1
+ c2) (4–25)

52



www.manaraa.com

Note that the optimal prices are linear additive functions of the unit costs. Therefore,

the price changes at a same rate over time as the corresponding cost for that generation. I

can also observe that price is decreasing convex in the price weight constants; that is p1 is

decreasing convex in a1, and p2 is decreasing convex in b1. As the weight of price increases,

the same price will have a larger (negative) effect on sales (refer to Eqns 4.3 and 4.5).

Therefore, the optimal price decreases in order to maximize the tradeoff between the profit

margin and sales. I may also note that when unit costs are constant, then the optimal

prices are also constant.

Theorem 2: Optimal Time to Market for CASE 1 When the sales function includes

price effect only, the optimal time to market t∗m is:

t∗m : −
∫ T

tm

(K1 −K2)dt ≥ ctm (4–26)

Where I define K1 = (p1 − c1)(a0 − a1p1) and K2 = (p2 − c2)(b0 − b1p2) as the profit rate for each

generation.

Note that if K1 > K2∀t, then λ3(tm) < 0 and therefore never greater than ctm > 0, so

I never introduce Generation 2. If, however, K2 > K1∀t, then λ3(tm) is decreasing in tm.

In this situation, if λ3(0) > ctm , I introduce Generation 2 immediately. But if K2 > K1∀t
and λ3(0) < ctm , then I never introduce Generation 2.

A two generation solution may be optimal when unit costs are changing over the

planning horizon. Consider the case where the first generation of products is fairly mature

such that the unit cost(c1)is constant, while the unit cost for the second generation of

products is decreasing over time. Suppose also that the product margins are such that

K2 < K1 initially, K2 = K1 at some point t∗s during the planning horizon, and K2 > K1

at the end of the planning horizon. The shape of λ3(t) in this situation is such that it

starts out fairly low, increases to a peak at t = t∗s, and then decreases to zero at t=T.

If λ3(t
∗
s) > ctm , then the optimal time to market for the second generation is some time

before t∗s. This result concurs with Carrillo and Franza (2004) who find that the optimal
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time-to-market can occur before the marginal value of sales of the new product exceed

those of the old product.

If unit costs are constant over the entire planning horizon, then I have λ3(tm) =

(K1 − K2)(T − tm). In Figure 4-1, I illustrate this behavior of λ3(tm). I can see clearly,

that when K2 > K1, because λ3(tm) is decreasing, I have a now or never optimal time to

market depending on the value of λ3(0) relative to ctm .

 

λ3(tm) 

ctm 

Time 

K2 > K1 

Figure 4-1. Evaluating λ3(tm) ≥ ctm when K2 > K1 and costs are constant.

Corollary 1: Optimal Time to Market for CASE 1 Under Constant Costs When

the unit costs are constant, the optimal time to market is as follows:

t∗m =





0 (now), (K2 −K1)T ≥ ctm ,

never, (K2 −K1)T < ctm or K1 > K2.
(4–27)

Keeping in mind that K1 and K2 are functions of price and cost, I can observe that

t∗m is decreasing in c1 and increasing in c2. This is intuitive since a larger unit cost for

Generation 1 will make it less profitable and therefore t∗m will decrease, or shift, from

”never” to ”now”, meaning only Generation 2 will be sold. Likewise, an increasing unit

cost for Generation 2 will make it less profitable and therefore t∗m will shift from ”now” to

”never”, meaning only Generation 1 will be sold. It is clear that t∗m is increasing in ctm .

That is, t∗m shifts from ”now” to ”never” if the cost of introducing Generation 2 is too

high.

I also observe that t∗m decreases in a1 and increases in b1. Similar to the sensitivity

of price to these parameters, as the weight of price increases, the same price will have a
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larger (negative) effect on sales. Therefore, an increase in these parameters makes selling

the corresponding generation less profitable due to a negative effect on sales and also an

implicit decrease in price, and therefore the time each generation is sold on the market

decreases. So as a1 increases, t∗m shifts from ”never” to ”now”, and as b1 increases, t∗m

shifts from ”now” to ”never”.

Corollary 2: Optimal Time to Market for CASE 1 Under Constant Costs with

Horizon Threshold Given a horizon threshold defined as T̄ = ctm
(K2−K1) , the optimal t∗m can be

written as follows:

t∗m =





0 (now), T ≥ T̄ ,

never, T < T̄ or K1 > K2.
(4–28)

Here, T̄ represents the tradeoff between the profit margin and the cost of introducing

a second generation. I can observe that t∗m is decreasing in T . That is, as the planning

horizon increases, it is more profitable to sell Generation 2 only (given that K1 ≤ K2).

Note: If K1 = K2, then I have T̄ = ∞ and T < T̄ will always be true. Thus, if I have

equal generations, then I only sell Generation 1 and never introduce Generation 2. This

seems intuitive; when I have equal generations, a positive introduction to market cost

ctm and λ3(tm) decreasing in tm both make Generation 1 to be the more profitable single

generation to be sold.

In summary, the key driver determining the optimal time to market for a linear price

demand model is the unit margins for each of the generations. When I consider a price

effect only on sales with constant unit costs, the optimal time to market for Generation

2 is either now or never. The optimal price in this situation is constant over the total

planning horizon. This concurs with the literature for single-generation models with a

price-only sales effect (see Kalish [12]).
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4.3.2 CASE 2: Diffusion Effect Only, No Price Effect

I now consider the isolated effect of diffusion on sales. Let us assume that a0 = a1 = 0

and b0 = b1 = 0, yielding the following sales rate functions:

f(x1, p1) = a2[φ(M1 − x1) +
ψ

M1

(M1 − x1)x1] (4–29)

g(x2, p2) = b2[φ(M2 − x2) +
ψ

M2

(M2 − x2)x2] (4–30)

Theorem 3: Optimal Prices for CASE 2 When the sales function includes diffusion

effect only, the optimal prices p∗1 and p∗2 are equal to the maximum market prices p̂1 and p̂2,

respectively.

Theorem 4: Optimal Time to Market for CASE 2 When the sales function includes

diffusion effect only, the optimal time to market t∗m is:

t∗m : [(p2 − c2)g(x2(T − tm))− (p1 − c1)f(x1(tm))](T − tm) ≥ ctm (4–31)

The above equation shows that the optimal tm is such that the profit earned for the

remaining time from introducing Generation 2 is greater than the cost of introducing

Generation 2 to the market.

I am not able to find a closed form solution for t∗m. However, I do investigate its

sensitivity to other parameters. I find λ3(tm) to be decreasing in p1, c2, and M1, which

yields a larger tm value. This result implies that for larger p1 and/or M1 values, I want to

sell Generation 1 for a longer time. Similarly, for larger c2 values, I want to sell Generation

2 for a shorter time, and thus tm is larger. I find opposite behaviors for the complimentary

parameters: λ3(tm) is increasing in p2, c1, and M2. In this case, I want to sell Generation 2

for a longer time so tm is smaller. I can observe, that although I do not consider the price

effect on the sales rate in this section, the optimal prices p∗1 and p∗2 still impact the optimal

time to market t∗m.

In the Numerical Analysis section, I investigate the behavior of t∗m under various

parameter assumptions.
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4.3.2.1 Time horizon threshold

Another significant parameter driving the optimal time to market is the length of

the planning horizon. In studying the behavior of λ3(tm), I notice that for small T values,

λ3(0) > 0 and is then generally decreasing. Consequently, it is optimal to sell only one

generation if λ3(0) > ctm . However, for larger T values, λ3(0) < 0 and is then generally

increasing. (Refer to Figure 4-2 for an illustration of this switching behavior in λ3(tm).)
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Figure 4-2. The switching behavior of λ3(tm) as T increases.

I conclude that there exists a threshold value of T , which I call T̄ , after which there

is a shift in the behavior and λ3(tm). The explanation of this threshold value is somewhat

intuitive. If the time horizon (T ) is too short, then cumulative sales benefits cannot be

fully realized. Specifically, the peak sales may not be reached. Thus it may be more

profitable to sell only one generation. Whereas for larger T values, more cumulative sales

can be accrued and thus it may be more profitable to introduce both generations. This

threshold behavior reveals that although T is considered to be a fixed parameter, it plays

an important role in the determination of t∗m.

Theorem 5: Horizon Threshold for CASE 2 Under Negligible Introduction Cost

When the sales function includes diffusion effect only, and the introduction cost is negligible
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(ctm = 0), a horizon threshold can be derived:

T̄ =

log




(2a2M1(−c1 + p1)φψ + b2M2(c2 − p2)(φ + ψ)2

−(φ + ψ)
√

b2M2(c2 − p2)(4a2M1(−c1 + p1)φψ + b2M2(c2 − p2)(φ + ψ)2))

2a2M1(c1 − p1)φ2




b2(φ + ψ)

(4–32)

Corollary 3: Optimal Time to Market for CASE 3 with Horizon Threshold Given

the horizon threshold T̄ defined in Theorem 5, the optimal time to market t∗m can be written as

follows:

t∗m





= 0 (now) or = T (never), T ≤ T̄ ,

> 0 (later), T > T̄ .
(4–33)

Where, for the case where t∗m > 0, I have t∗m as defined in Theorem 4.

Therefore, the optimal time to market is defined relative to the planning horizon

threshold. For relatively short planning horizons, a single generation is optimal. For longer

planning horizons, it is optimal to introduce two generations of products to the market.

For the single generation optimal solution, to determine whether Generation 1 or

Generation 2 should be sold, I must compare the relative profit margins to the cost of

introduction to market ctm . For example, under a short planning horizon (T < T̄ ), if

ctm is low and Generation 2 has a high profit margin (p2 − c2), then it is optimal to sell

Generation 2 only, that is introduce now (t∗m = 0). If, again for a short horizon, both

generations have equal profit margins (p1 = p2 and c1 = c2) and a positive introduction

cost (ctm > 0), then I should never introduce Generation 2 (t∗m = T ) and sell Generation 1

only.

Furthermore, this threshold is dependent on price, cost, and market characteristics

for both of the generations. I find T̄ to be decreasing in p1, c2, and M1. A smaller T̄ value

implies that the optimal solution is more likely to contain two generations of products.
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I can also observe that λ3(0) is increasing in these parameters. Thus, as conditions

for Generation 1 become more favorable, I am more likely to either never introduce

Generation 2 (t∗m = T ) for a smaller set of T values or introduce Generation 2 later

(t∗m > 0) for a larger set of T values.

The opposite behavior is found for p2, c1, and M2. That is, I have a larger T̄ value,

which implies that more T values will fall under the threshold. I observe that λ3(0)

is decreasing in these parameters. Thus, as conditions for Generation 2 become more

favorable, I am more likely to either introduce later (t∗m > 0) for a larger set of T values or

never (t∗m = T ) for a smaller set of T values.

Notice also that although price is not a part of the sales rate function, it does

influence the threshold value and thus the optimal time to market. In the Numerical

Analysis section, I also examine the behavior of T̄ under various parameter assumptions.

4.3.2.2 A benchmark scenario

For further insights into this problem, I analyze a benchmark scenario. Consider the

situation when both generations are equal in price, cost, and market size, and I assume the

introduction to market cost is negligible: p1 = p2, c1 = c2, M1 = M2, and ctm = 0. The

expression for the threshold value T̄ then reduces to the expression in Corollary 4.

Corollary 4: Horizon Threshold for CASE 2 Under a Benchmark Scenario Under

a benchmark scenario with equal generations and zero introduction to market cost,the horizon

threshold is derived to be the following:

T̄ =
log(ψ2

φ2 )

φ + ψ
(4–34)

Corollary 5: Optimal Time to Market for CASE 2 Under a Benchmark Scenario

Under a benchmark scenario with equal generations and zero introduction to market cost, with a

horizon threshold T̄ =
log(ψ2

φ2 )

φ+ψ , the optimal time to market can be written as:

t∗m =





T (never), T ≤ T̄ ,

T
2 , T > T̄ .

(4–35)
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Thus, according to Corollary 5, for equal generations, I either sell Generation 1 only

(for T < T̄ ) or I bisect the time horizon among the two generations.

I further observe that T̄ /2 is actually equivalent to the peak sales time tp : δf(x1(t))
δt

=

0. Then, for values of T > T̄ , with equal generations, I have t∗m = T/2 which is larger than

T̄ /2 = tp. This brings us to a conclusion contrary to the current literature.

Corollary 6: Optimal Time to Market vs Peak Sales Under a Benchmark

Scenario Under a benchmark scenario with equal generations and zero introduction to market

cost, it is optimal to introduce the second generation after peak sales are realized.

t∗m = T/2 > tp (4–36)

Where peak sales are defined as tp : δf(x1(t))
δt = 0.

Mahajan and Muller (1996) utilize numerical analysis to solve a similar problem

with an infinite planning horizon, and find that a ”now” or ”at maturity” (i.e. when peak

sales are reached) rule is optimal. A key difference between my models, however, is that

I consider a finite planning horizon. Consequently, my analytic results show that during

a finite planning horizon, it is optimal to introduce the second generation ”now” or ”after

maturity” such that each generation is in the marketplace for an equivalent amount of

time.

4.3.3 CASE 3: Price and Diffusion Effects

I now consider the most general case for the sales function in which both price and

diffusion effect sales. Here, I assume that a0, a1, a2 and b0, b1, b2 are positive constants

(6= 0). I then have the following functional forms.

f(x1, p) = a0 − a1p + a2[φ(M1 − x1) +
ψ

M1

(M1 − x1)x1] (4–37)

g(x2, p2) = b0 − b1p2 + b2[φ(M2 − x2) +
ψ

M2

(M2 − x2)x2] (4–38)
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Theorem 6: Optimal Prices for CASE 3 When the sales function includes both price

and diffusion effects, the optimal prices p∗1 and p∗2 are:

p∗1 =




(2a2
1a2c1ψt2t2m ± (t2m + a2t(φ− ψ)t2m + t2(−2 + a2(−φ + ψ)tm))

√
a2

1M1(4a2(a0 − a1c1)ψt2m + M1(4 + a2tm(4φ− 4ψ + a2(φ + ψ)2tm)))

+a1(2a0a2ψt2m(−t2 + t2m) + M1(a2t(φ− ψ)t2m(2 + a2(φ− ψ)tm)

+t2m(2 + a2tm(φ− ψ + 2a2φψtm))− t2(4 + a2tm(4φ− 4ψ + a2(φ2 + ψ2)tm)))))




2a2
1a2ψt4m

(4–39)

p∗2 =




b2M2(T − t)(T − tm)2(φ2t + ψ2t + 2φψT − (φ + ψ)2tm)

±−2t2+T 2+4ttm−tm(2T+tm)
b1b2

[−2b1M2 +

√√√√√√√√√

b2
1M2(M2(4 + 4b2(φ− ψ)(T − tm)

+b2
2(φ + ψ)2(T − tm)2)

+4b2(b0 − b1c2)ψ(T − tm)2)

]

±T−tm
b1

[2b2
1c2ψ(t− tm)2(T − tm)

+(φ− ψ)(−t + T )

√√√√√√√√√

b2
1M2(M2(4 + 4b2(φ− ψ)(T − tm)

+b2
2(φ + ψ)2(T − tm)2)

+4b2(b0 − b1c2)ψ(T − tm)2)

(−t + tm)

+b1(−2b0ψ(t− T )(t + T − 2tm)(T − tm)

−M2(φ− ψ)(4t2 − T 2 + 4Ttm + t2m − 2t(T + 3tm)))]




2b1ψ(T − tm)4

(4–40)
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Theorem 7: Optimal Time to Market for CASE 3 When the sales function includes

both price and diffusion effects, the optimal time to market t∗m is:

t∗m :


(T − tm)((−2b1M2 + b1b2M2(−φ + ψ)(T − tm)

+

√√√√√√
b2
1M2(M2(4 + 4b2(φ− ψ)(T − tm) + b2

2(φ + ψ)2(T − tm)2)

+4b2(b0 − b1c2)ψ(T − tm)2)
)2

− 1
a3
1a2

2t4m
(a1M1(−2 + a2(−φ + ψ)tm)

+
√

a2
1M1(4a2(a0 − a1c1)ψt2m + M1(4 + 4a2(φ− ψ)tm + a2

2(φ + ψ)2t2m)))2)




4b3
1b

2
2ψ

2(T − tm)4
≥ ctm

(4–41)

I cannot find a closed form solution for t∗m. Thus, I perform several numerical

experiments to further study the behavior of λ3(tm). I consider a benchmark scenario, as

in CASE 2, with equal generations and ctm = 0. As in CASE 2, I find that t∗m = T/2.

However, I do not have a threshold behavior for the time horizon in CASE 3. In the

Numerical Analysis section, I further analyze the sensitivity of t∗m to various parameters

under the benchmark scenario.

4.4 Numerical Analysis

I perform numerical analysis for CASE 2 and CASE 3. I observe the behavior of

the cumulative sales (x1 and x2), and sales rates (f and g). I also study the sensitivity

of t∗m, T̄ , p∗1, and p∗2 to several parameters. I use the following parameter values from the

benchmark scenario discussed in section 4.2.2 in which I consider equal generations. I

assume p > c and 0 ≤ φ, ψ ≤ 1; values for φ and ψ are values commonly used in empirical

literature.
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c1 = c2 = 3

ctm = 0

M1 = M2 = 100

φ = 0.05

ψ = 0.5

a0 = b0 = 0

a1 = b1 =





0, CASE 2

1, CASE 3

a2 = b2 = 1

For CASE 2, I have a1 = b1 = 0 (no price effect) and a2 = b2 = 1. For CASE 3, I have

a1 = b1 = 1 and a2 = b2 = 1.

4.4.0.1 Cumulative sales and sales rate

Let us begin by studying the behavior of the cumulative sales (x1 and x2), and sales

rates (f and g) for CASE 2 and CASE 3.

In CASE 2, since the optimal price values are the maximum market price, I set

p1 = p2 = 5. For the parameter values defined above, I find T̄ = 8.373. For now, I will

set T = 10 (so that T > T̄ ) and tm = 5 (tm = T/2). I use the expressions derived in

4.21, 4.23, 4.29, and 4.30 to create the CASE 2 graphs below. I can observe an increase in

cumulative sales and a peak behavior in sales rate for both generations in Figures 4-3 and

4-4, respectively.

I can calculate the peak sales value to be tp = T̄ /2 = 8.373/2 = 4.187. Thus

I can confirm my theoretical findings from the benchmark case that, for T > T̄ , the

optimal time to market t∗m = T/2 will be greater than peak sales. (For example, for

T = 9 > T̄ = 8.373, I have t∗m = T/2 = 4.5 > tp = 4.187. Likewise, for T = 10 > T̄ = 8.373,

I have t∗m = T/2 = 5 > tp = 4.187.)

In CASE 3, for the given parameter values, I calculate T̄ = 89.9. Thus, I initially set

T = 90 (T > T̄ ) and find the corresponding time to market to be tm = 45 (tm = T/2).
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Figure 4-3. CASE 2: Behavior of cumulative sales x1 and x2 over time.
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Figure 4-4. CASE 2: Behavior of sales rates f(x1) and g(x2) over time.

I use the expressions derived in 4.42, 4.43, 4.52, and 4.59 to create the CASE 3 graphs

below. I observe linearly increasing cumulative sales and a constant sales rate for both

generations in Figures 4-5 and 4-6, respectively.

Let us discuss further the cumulative sales and sales rate behaviors for CASE 2

and CASE 3. In CASE 2, the cumulative sales are increasing convexly and sales rate is

concave. These are the standard behaviors for sales with diffusion effect only and can be

found in the diffusion literature.
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Figure 4-5. CASE 3: Behavior of cumulative sales x1 and x2 over time.
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Figure 4-6. CASE 3: Behavior of sales rates f(x1, p1) and g(x2, p2) over time.

In CASE 3, I have both diffusion and price effect. I find that the cumulative sales

becomes linear and the sales rate constant. This is a very different and interesting

behavior. It seems that the diffusion effects captured in CASE 2, are offset by the price

effect. That is, for cumulative sales, having a positive weight coefficient for price decreases

sales, and thus flattens the convex curve found in CASE 2 to a linear curve in CASE 3.

For the sales rate, the price coefficient has a negative effect on sales rate which is smaller

than the positive effect of the diffusion coefficient, thus yielding a positive constant sales

rate. This behavior may be due to my model assumptions. That is, in my sales functions,
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the price and diffusion effects are additive. These graphs illustrate, that even for the

benchmark situation of equal generations, including the effect of price on sales makes a

major difference in cumulative sales and sales rate behavior.

I also look at the behavior of p∗1 and p∗2 over time for this benchmark scenario. In

Figure 4-7, I see that both p∗1 and p∗2 follow a concave curve. That is, the optimal pricing

behavior appears to be initially low so as to increase the sales, and then as the product

diffuses to the marketplace it increases, and then decreases again towards the end of the

horizon. Since I consider equal generations in this benchmark scenario, p∗1 and p∗2 are

identical.
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Figure 4-7. CASE 3: Behavior of optimal price p∗1 and p∗2 over time.

4.4.0.2 Sensitivity analysis

I now conduct a sensitivity analysis of my decision variables t∗m, p∗1, and p∗2 to the cost,

population size, and price and/or diffusion coefficient parameters for CASE 2 and CASE 3.

I vary the parameters increasingly according to the following values:

c1, c2, ctm = (0,5)

M1, M2 = (20, 110)

a1, b1 = (1,3)

a2, b2 = (1,1.8)
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Increasing 
parameter 

Tthresh tm* Profit 

c1 increasing decreasing decreasing 

c2 decreasing increasing decreasing 

ctm -- increasing decreasing 

    

M1 decreasing increasing increasing 

M2 increasing decreasing increasing 

    

a2 decreasing decreasing increasing 

b2 decreasing increasing increasing 

 
Table 4-1. Sensitivity analysis results for CASE 2.

Increasing 
parameter 

tm* p1(t) p2(t) Profit 

c1 decreasing increasing less variation decreasing 

c2 increasing less variation increasing decreasing 

ctm increasing less variation increasing decreasing 

     

M1 increasing increasing more variation increasing 

M2 decreasing more variation increasing increasing 

     

a1 decreasing decreasing less variation decreasing 

b1 increasing less variation decreasing decreasing 

     

a2 decreasing increasing more variation increasing 

b2 increasing more variation increasing increasing 

 Table 4-2. Sensitivity analysis results for CASE 3.

The sensitivity results for CASE 2 and CASE 3 are summarized in Tables 6 and 7.

For CASE 2, since the horizon threshold T̄ is sensitive to the selected parameters and t∗m

depends on T̄ , I first analyze the sensitivity of T̄ and then calculate t∗m for each parameter

value. Similarly, for CASE 3, since p∗1 and p∗2 are functions of tm, for all parameter

changes, I first find t∗m. (Note: For these experiments, when multiple solutions for t∗m were

found, I evaluated and compared the total profit for each solution and chose the t∗m which

yielded the maximum profit value.)

Let us first examine the results for CASE 2. As c1 increases, selling Generation 1

becomes less profitable and so t∗m decreases from a large value close to T (almost ”never”)

to ”now” (Generation 2 only). Likewise, as c2 increases, selling Generation 2 becomes less
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profitable and so t∗m increases from ”now” (Generation 2 only) to ”never” (Generation 1

only). As ctm increases, it becomes more costly to introduce Generation 2 to the market

and so t∗m increases from T/2 to ”never” (Generation 1 only). This increase occurs quickly,

illustrating how sensitive t∗m is to ctm . As M1 increases, it becomes more profitable to sell

Generation 1, thus t∗m increases from ”now” (Generation 2 only) to a high value close to T

(almost ”never”). Likewise, as M2 increases, it becomes more profitable to sell Generation

2, thus t∗m decreases from ”never” (Generation 1 only) to a low value close to 0 (almost

”now”).

To explain the relationship between a2 and t∗m (and likewise, b2 and t∗m) I must

re-consider the definition of a2 and b2. These coefficients, which represent the weight of

the effect of diffusion on sales, can also be defined as the speed of diffusion. That is, as

a2 increases, the speed of diffusion of sales for Generation 1 increases, meaning that it

takes less time to reach maximum sales. Thus t∗m decreases since Generation 2 can be

introduced earlier without losing profit from Generation 1. Likewise, as b2 increases, the

diffusion rate for Generation 2 increases, meaning Generation 2 does not need as much

time on the market in order to reach maximum sales, thus t∗m increases. (Note: t∗m only

increases or decreases slightly from T/2. Since the change in t∗m is small, it shows that

these parameters have a minimal effect on t∗m.).

I also look at the sensitivity of overall profit to these parameters. For CASE 2, profit

is decreasing in costs. This is clear for c1 and c2 since an increase in these values decreases

their corresponding generation’s profit margin. For the cost of introducing Generation 2

to the market, since an increase in ctm increases t∗m to ”never”, this means Generation 2

will not be offered, and therefore total profits decrease. Profit is increasing in population

size. This is intuitive since a larger population size will increase the sales rate and thus

the corresponding generation’s profit will also increase, increasing total profit. An increase

in the diffusion coefficients a2 and b2 also increases profit. Since these coefficients directly

effect the sales rate, the corresponding generation’s profit component also increases.

68



www.manaraa.com

For CASE 3, I consider the effect of the parameters on t∗m and then implicitly on p∗1

and p∗2. I find results for costs, population size, and diffusion coefficients to be similar

to CASE 2. To explain the relationship between a1 and t∗m (and likewise between b1

and t∗m), I may refer back to the effects of these parameters on the time to market and

pricing decisions discussed in the analytical section for CASE 1. I find that t∗m decreases

in a1 and increases in b1. As the weight of price increases, the same price will have a

larger (negative) effect on sales. That is, an increase in these parameters makes selling

the corresponding generation less profitable due to a negative effect on sales and also

an implicit decrease in price. Therefore the time each generation is sold on the market

decreases. So as a1 increases, t∗m decreases, and as b1 increases, t∗m increases.

For CASE 3, I also study the sensitivity of the optimal prices p∗1 and p∗2 to these

parameters. For costs, I find that as a generation’s unit cost increases, its corresponding

optimal price also increases. This seems like a natural reaction driven by the maximize

profit objective. Thus, as c1 increases, p∗1 increases, and as c2 increases, p∗2 increases. When

these generation costs increase, the complimentary generation has a decrease in its price

variation, or it is more stable over time. For example, as c1 increases, the variation in p∗2

over time decreases. As ctm increases, I see that p∗2 increases in order to balance the total

margin of offering Generation 2.

As the population sizes increase, the corresponding generation’s price increases in

order to take advantage of the larger market. For example, as M2 increases, p∗2 increases.

The complimentary generation’s price has more variation, that is it is less stable over time.

For the same example, if M2 increases, p∗1 becomes less stable over time. As in CASE 1,

as a1 or b1 increase, the corresponding generation’s price decreases since sales become

more sensitive to price. As the diffusion coefficients a2 and b2 increase, the corresponding

generation’s prices increase. This may be motivated by the increased sales from diffusion.

I also look at the sensitivity of overall profit to these parameters. For CASE 3, profit

is decreasing in costs. This is clear for c1 and c2 since an increase in these values decreases
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their corresponding generation’s profit margin. For the cost of introducing Generation 2 to

the market, since an increase in ctm increases t∗m, this means Generation 2 will be offered

for less time, and therefore total profits decrease. Profit is increasing in population size.

This is intuitive since a larger population size will increase the sales rate and thus the

corresponding generation’s profit will also increase, increasing total profit. An increase in

the diffusion coefficients a2 and b2 also increases profit. Since these coefficients directly

increase the diffusion rate, the corresponding generation’s profit component also increases.

An increase in the price coefficients a1 and b1 decreases profit due to their negative effect

on sales.

Overall, these numerical results support my analytical conclusions for t∗m, and in

CASE 3, for p∗1 and p∗2. The sensitivity of my decision variables to the selected parameters

seems fairly intuitive. CASE 3 does offer a more interesting set of results. I can observe

the implicit effect of time to market on optimal prices, and the effect on price variation

in the complimentary generations. For CASE 2, changes in these parameters may effect

whether one or two generations will be sold. For CASE 3, usually two generations are

always optimal, although the time to market may change significantly. A manager may

consider the sensitivity of time to market and pricing when choosing or negotiating his

unit costs, deciding what population size to market to, or in studying the weight of price

and diffusion in the market.

Please refer to Chapter 6 for the related conclusions and future research extensions.
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CHAPTER 5
OPTIMAL NUMBER OF GENERATIONS FOR A MULTI-GENERATION PRICING

AND TIMING MODEL IN NEW PRODUCT DEVELOPMENT

5.1 Introduction

When examining a new product development (NPD) marketing scenario, there

are several operations management (OM) and marketing decisions to be considered.

Operations decisions may include production timing and quantity, capacity investments

and constraints, and time-to-market decisions. The marketing perspective may consider

pricing decisions, and investments in quality and innovation speed. The NPD literature

has examined these decisions in a primarily disjoint fashion. This chapter contributes

to the OM/Marketing Interface literature by solving both pricing and time-to-market

decisions simultaneously. In addition, there has been limited literature discussing the

optimal innovation speed, or clockspeed, for NPD products. In this chapter, I solve for

the optimal number of generations of an NPD product, when sales are a function of both

pricing and diffusion.

The remainder of this chapter is organized as follows. In Section 2, I describe in detail

my model assumptions and mathematical objective. In Section 3, I perform my analysis

using optimal control theory to derive expressions for the optimal number of generations

and optimal price per generation. In Section 4, I perform numerical experiments to

examine the behavior of these optimal expressions as well as a sensitivity analysis to all

parameters.

Please refer to the Chapter 2 for a review of the related literature.

5.2 Model

I consider multiple generations of a new product sold over a finite time horizon, T .

Each product of generation i is produced at a unit cost ci(t) and sold at a price pi(t) to

a population of size Mi. Each new generation is introduced to the market at a fixed cost

ctmi
. I consider a single rollover scenario, in which sales of Generation i will stop once

Generation i + 1 is introduced to the market.
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Our objective is to determine the optimal price for each generation, p∗i (t), the optimal

introduction time for each generation, t∗mi
, and the optimal number of generations, n∗,

such that total profit is maximized over the time horizon. The objective function is stated

mathematically in Equation 3.1.

Π =
n∑

i=1

∫ tmi

0

ẋi(t)(pi(t)− ci(t))dt−
n∑

i=1

ctmi
vtmi

(5–1)

Where I have sales rate defined as:

ẋi = a0i
− a1i

pi + a2i
(φ(Mi − xi) +

ψ

Mi

(Mi − xi)xi) (5–2)

I define total profit as the net revenue for each generation earned over the time

horizon, minus the cost of introduction to market for each generation. The objective

function may be considered as an extension of the two-generation pricing and timing

model from Chapter 4. Since I assume a finite time horizon T , I do not include discounting.

The sales rate is an additive model of both price and diffusion effects on sales. The

diffusion component is based on the Bass (1969) [10] diffusion model. I have a0i
, a1i

, and

a2i
as coefficients for initial sales, pricing effect, and diffusion effect, respectively, for each

generation i.

The variable vtmi
is an impulse variable which is used to determine whether or not

Generation i is introduced to the market. If it is introduced, the corresponding fixed cost

ctmi
is incurred.

To simplify this non-linear optimization problem, let us assume all generations to be

equal. Thus I have: pi = p, ci = c, ctmi
= ctm , ẋi = ẋ which implies Mi = M and xi = x. I

then have the following profit expression:

Π = n

∫ tm

0

ẋ(t)(p(t)− c(t))dt− nctm (5–3)

Notice that the impulse variable vtmi
has been transformed implicitly in the number of

generations to be sold, n. Our decision variables are now p(t), tm, and n.
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Based on results from the benchmark scenario of both CASE 2 and CASE 3 from

Chapter 4, I assume that all generations (of equal characteristics) will be spaced out

equally in the time horizon. That is, I assume tm = T/n. This assumption is also made

in Carrillo (2004) [22]. Morgan, Morgan and Moore (2001) [21] note that equal spacing of

generations may not be optimal, but still yields good solutions. Carrillo (2005) [23] points

out that the empirical literature supports pacing new products at regular time intervals.

I would like to note that my assumptions are made based for a top-level strategic

perspective. I am considering an aggregate planning model to determine an optimal

time-pacing strategy. Thus, assuming equal generations paced at equal intervals provides

insight into this top-level strategy for both the optimal number of generations and the

optimal pricing per generation. These assumptions also allow us to derive closed form

expression for my optimal decisions.

Thus, I have the following model:

Max Π = n

∫ T/n

0

ẋ(t)(p(t)− c(t))dt− nctm (5–4)

s.t. λ(t) : ẋ(t) = f(x(t), p(t)) (5–5)

Where the sales rate function is:

f(p(t), x(t)) = a0 − a1p(t) + a2(φ(M − x(t)) +
ψ

M
(M − x(t))x(t)) (5–6)

A summary of my notation is given below.
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n number of generations to introduce

tm time at which a new generation is introduced to the market

p(t) dynamic price offered per generation

T length of the planning horizon

c(t) unit cost at time t of the current generation

ctm fixed cost of introducing the next generation to the market at time tm

ẋ(t) sales rate at time t of the current generation

x(t) cumulative sales in the time interval (0, t) of the current generation

λ(t) marginal value of selling one unit of the current generation

a0 positive constant for initial sales

a1 positive constant for price effect on sales rate

a2 positive constant for diffusion effect on sales rate

M market size of each generation

φ coefficient of innovation

ψ coefficient of imitation

5.3 Analysis

I solve my model using Optimal Control Theory, since I have the dynamic nonlinear

optimization for p(t). Optimal Control Theory is a non-linear optimization methodology

utilized for dynamic economic problems. For a summary of the methodology and

applications, refer to Sethi and Thompson (2000) [15]. For my model, the control variable

is the price for each generation, p(t). The state variable is the cumulative sales for each

generation, x(t). The adjoint variable is the marginal value defined in the problem

constraint: λ(t). Similar to Gaimon and Morton (2005) [35], I will solve for the optimal

number of generations, n∗, using first order conditions (f.o.c.) of the profit expression. I

define the Hamiltonian as follows. (Please note: From this point forward, I remove the
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time variable for clarity.)

H = (λ + n(p− c))(a0 − a1p + a2(φ(M − x) +
ψ

M
(M − x)x))) (5–7)

To find the optimal price p∗(t), I first use the f.o.c. typically associated with Optimal

Control Theory to derive an expression for p∗ in terms of cumulative sales x and the

marginal value of sales λ. I then solve for x and λ using simultaneous differential

equations and Optimal Control methods. I then substitute back in the derived x∗ and

λ∗ expressions to find the expression for p∗.

Theorem 1: Optimal Price per Generation For equal generations and sales rate as a

function of both price and diffusion, the optimal price per generation p∗(t) is:

p∗(t) =




2a2
1a2cψt2 T 2

n − (T 2

n2 + a2(φ− ψ)tT 2

n2 + t2(−2 + a2(−φ + ψ)T
n ))√(

a2
1Mn2(4a2(a0 − a1c)ψ T 2

n2 + M(4 + a2
T
n (4φ− 4ψ + a2(φ + ψ)2 T

n )))
)

+a1n(2a0a2ψ
T 2

n2 (−t2 + T 2

n2 ) + M(a2(φ− ψ)tT 2

n2 (2 + a2(φ− ψ)T
n )

+T 2

n2 (2 + a2
T
n (φ− ψ + 2a2φψ T

n ))− t2(4 + a2
T
n (4φ− 4ψ + a2(φ2 + ψ2)T

n ))))




2a2
1a2ψ

T 4

n3

(5–8)

Here I have assumed equal generations offered for equal time, and thus tm = T/n. I

must note that a1, a2, and ψ should never be zero. [Please refer to Appendix C for proofs

of all theorems.]

I am also able to show that the optimal price p∗(t) is concave over time for constant

costs and relatively large initial sales. This result is similar to those shown in Kalish

(1983) [12] for a single generation of a new product.

Corollary 1: Optimal Price Concave over Time For equal generations and sales rate

as a function of both price and diffusion, assuming constant costs c(t) = c and initial sales

relatively larger than cost such that a0 − a1c ≥ 0, the optimal price per generation p∗(t) is concave

over time.
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Using p∗(t) as derived above, I can restate my maximum profit objective function as

follows.

Π(p∗(t)) = n

∫ T/n

0

ẋ(p∗(t))(p∗(t)− c(t))dt− nctm (5–9)

Again, assuming equal generations offered for equal time to market for each

generation, I have tm = T/n. Making this substitution in Π, when s.o.c. for concavity

of profit are met, I can find n∗ from the f.o.c. to be the following.

Theorem 2: Optimal Number of GenerationsFor equal generations and sales rate as

a function of both price and diffusion, and assuming that each generation is offered for an equal

amount of time (tm = T/n), when the second order conditions for profit hold, the optimal number

of generations to offer, n∗, is the following:

n∗ =

((8(3(2/3))a2
0a1a2ctmM2(φ− ψ) + 8(3(2/3))a3

1a2cctmM(cM(φ− ψ) + 6ctmψ)

−16(3(2/3))a0a1a2ctmM(a2M
2φ(ψ − φ) + a1(cM(φ− ψ) + 3ctmψ))

+3(2/3)a2
1a

2
2ctmM2(16cMφ(ψ − φ) + 3ctm(φ2 − 18φψ + ψ2))

+3(1/3)K(2/3) + a1a2ctmM(φ− ψ)(8(3(2/3))a2
2M

3φ2 − 9K(1/3)))T )

24a1ctmMK(1/3)

(5–10)

Where I define K as:

K =

(a2
1a2c

2
tmM(−192a3

1c
3Mψ + 2

√
6√√√√√√√√√√√√




−1
a1ctm

((M(a0 − a1c + a2Mφ)(8(a0 − a1c)2

−a2(9a1ctm − 16a0M + 16a1cM)φ

+8a2
2M

2φ2) + 9a1a2ctm(a1(2ctm − cM)

+M(a0 + a2Mφ))ψ)2(a2M
2(φ− ψ)3 − 24a1ctmψ2))




−24M(a0 + a2Mφ)2(−8a0ψ + a2M(3φ2 − 14φψ + 3ψ2))

−72a2
1(−8a0c

2Mψ + a2(3cctmM(φ− ψ)ψ + 6c2
tmψ2 + c2M2(φ2 − 10φψ + ψ2)))

+9a1M(−64a2
0cψ + 8a0a2(3ctm(φ− ψ)ψ + 2cM(φ2 − 10φψ + ψ2))

+a2
2M(16cMφ(φ2 − 6φψ + ψ2) + ctm(φ− ψ)(φ2 + 22φψ + ψ2)))))

(5–11)
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Note that this result will only be optimal if the s.o.c. of profit hold; that is, I must

show that profit is concave in n in order to use f.o.c. to find the optimal n∗ which

maximizes the profit function Π. I am not able to show that this s.o.c. (specifically

δ2Π
δn2 ≤ 0) always holds nor derive analytical conditions under which it holds. However, for

specific numerical instances, I can easily check this s.o.c. to ensure that the n∗ value found

from the f.o.c. is indeed optimal. Please refer to the Appendix for a complete expression of

this s.o.c. for profit to be concave in n.

This analytical expression allows any manager who can set reasonable parameter

values to determine the optimal number of generations to offer in a given time horizon.

The optimal number of generations, n∗, will also determine the optimal amount of time

each generation should be on the market: t∗m = T/n∗.

5.4 Numerical Experiments

I now perform numerical experiments to draw further insights from my analytical

results. I consider a benchmark scenario of equal generations with the following parameter

values.

T = 100

c = 3

ctm = 50

a0 = 25

a1 = 1

a2 = 1

M = 100

φ = 0.05

ψ = 0.5

Note that I assume the fixed cost per generation, ctm , is much higher than the

unit cost, c. I would also like to explain that based on the other parameter values, the

parameter a0 must have a relatively high value in order to have positive sales values over

time for the price component of the sales rate (a0 − a1p(t) ≥ 0, ∀t).
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Using these parameter values, I found the optimal number of generations to be

n∗ = 24.015, yielding an optimal time to market t∗m = T/n∗ = 4.164. Thus, under these

parameter values for equal generations, a manager would sell 25 generations for 4.164 time

units each. The profit achieved with this optimal strategy is $28,679.

Profit as a function of n is graphed in Figure 5-1. I am able to check the s.o.c. of

profit under these parameter values and find profit to be concave in n for n ≤ 41.25. Thus,

my n∗ value of 24.015 found from the f.o.c. result is indeed optimal.

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3
x 104 Profit vs n

Figure 5-1. Profit as a function of n.

The optimal price over time is shown in Figure 5-2. The optimal price at time t = 0

is p∗(0) = $13.07. Price then increases to a maximum value of p̂∗(t) = $23.19, and

decreases to p∗(tm) = $20.21 before the next generation is introduced. This concave

increasing/decreasing behavior of optimal price reflects an initial attempt to attract

customers followed by an increase in price once a solid market position is attained

finishing with a decreasing price as the diffusion of sales declines.

I can better understand the behavior of the optimal price p∗(t) by examining the

behavior of the sales rate f(p(t), x(t)) over time. Recall that from Equation 3.2 that the
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Figure 5-2. Optimal Price p∗(t), over time.

sales rate f(p, x) is comprised of a negative price component and a positive diffusion

component. I graph these two components separately in Figure 5-3.
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Figure 5-3. Price Component and Diffusion Component of Sales Rate, over time.

Over time, the diffusion component of the sales rate is increasing then decreasing.

This is comparable to the literature on NPD diffusion and the Bass Model (see for
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example Bass (1969) [10] and Norton and Bass (1987) [11]). I believe that this diffusion

behavior of sales affects the optimal price, such that it is also increasing then decreasing.

I observe that the time at which the maximum optimal price is offered, t̂, is equal to the

time at which peak sales from the diffusion component occur, tp = 2.7. Since I have

a negative price effect on sales plus a positive diffusion effect, my sales rate becomes

constant at f(p, x) = 16.93 (see Figure 5-4).

0 0.5 1 1.5 2 2.5 3 3.5 4
15.5

16

16.5

17
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Sales Rate f(p,x) over Time

Figure 5-4. Sales Rate f(p, x), over time.

I perform a sensitivity analysis on several parameters affecting the optimal number of

generations (and thus also the optimal time to market), the optimal price over time and

maximum price offered, and the total profit. I vary the following parameter values over the

range specified below:

T = (10, 150)

ctm = (1,150)

c = (0,10)

M = (10, 150)

a0 = (22, 40)

a1 = (1,6)

a2 = (1,6)

80



www.manaraa.com

Increasing 
parameter 

n* tm* Profit 
 

p*(t) p*max 

T increasing constant increasing  same constant 
       

ctm decreasing increasing decreasing  increasing increasing 

c decreasing increasing decreasing  increasing increasing 
       

M decreasing increasing increasing  more variation increasing 
       

a0 increasing decreasing increasing  increasing increasing 

a1 decreasing increasing decreasing  decreasing decreasing 

a2 increasing decreasing increasing  more variation increasing 

 Table 5-1. Summary of Sensitivity Analysis Results.

A summary of my results is shown in the table below.

I will discuss these results one parameter at a time. For each parameter, I will

discuss the sensitivity of the decision variable for the changes in that parameter value.

Referring to Table 5-1, I will examine one row at a time and discuss the results shown in

the corresponding column variables. As a quick note, among the variables that I examine

(columns in Table 5-1), the price p(t) is the only dynamic variable. I summarize the

overall change in behavior for price over time. I explain in more details below what each of

these descriptions imply.

Let us first discuss the parameter T , the time horizon. As the time horizon increases,

the optimal number of generations to offer, n∗, increases. That is, the more time I have to

sell, the more generations I will offer. Since I assume tm = T/n, and since n is increasing

linearly in T , I find tm to remain constant as T increases. That is, the time I offer each

generation is not affected by the length of the horizon since I am increasing the number of

generations offered.

I find profit increasing in T ; this is expected since as the number of generations

increases so do my total sales. I find the optimal price over time to be unaffected by

changes in T , and thus the maximum price is constant.

For increasing values of ctm , I find n∗ to be decreasing. That is, the more costly it

is to introduce a new generation, the fewer number of generations will be introduced.

81



www.manaraa.com

Since I have an inverse relationship between n∗ and t∗m (t∗m = n∗/T ), I thus find t∗m to

be increasing. That is, if I offer fewer number of generations over the time horizon, then

each generation will be offered for more time. As development costs increase, profit is

decreasing.

As ctm increases, I find an increasing shift in the optimal price. That is, the concave

behavior of price still holds, but the entire price curve shifts upward as costs increase.

This creates a larger maximum price to counter the higher costs. I illustrate this affect on

price in Figure 5-5. Notice the overall increase in the price curve from the solid line to the

dashed line. Although price is increasing in development costs, it does not seem to be very

sensitive; that is, over a large increase in ctm there is a slight increase in p(t) over time.

0 5 10 15 20 25 30 35
10

15

20

25
p*(t) vs ctm

 

 

ctm = 1 ctm = 145

Figure 5-5. Increasing Shift in Price Curve: p∗(t) vs. ctm .

Similarly, as unit costs, c, increase, the number of generations offered, n∗, decreases

and thus the time each generation is offered, t∗m, increases. Intuitively, as costs increase,

profit decreases. In response to increasing c, I find that prices also increase throughout tm;

that is, the price curve shifts up. The maximum price thus also increases.
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For market size, M , the larger my market, the fewer number of generations I should

offer. This implies that t∗m is increasing in M while n∗ is decreasing. This result reflects on

the impact of diffusion on sales. That is, the larger my market size, the more time I should

allow my product to diffuse into the market. Thus, I find a higher t∗m value. Even though

the number of generations decreases in market size, my total profit increases from the

positive effect of increased tm on sales. I find price to have more variation over time as M

increases. That is, the peak in the price curve is steeper with larger values of M , meaning

that for larger population size the change in price over time is more dramatic. This larger

variation in prices may be possible since a larger market may increase the probability of

sales. This may also explain the increase in the maximum price offered.

Lastly, I examine the sales rate coefficient parameters. For a0, the initial sales, an

increasing value leads to more generations and a decreasing time on the market for each

generation. The profit is increasing, as is price. For a1, the customer’s sensitivity to

price, an increase leads to fewer generations being offered for more time each. That is, as

customers become more sensitive to price they are less willing to buy at the same price

and thus fewer products are offered. Both profit and price decrease as a1 increases. For

a2, the speed of diffusion, an increase yields a larger number of generations offered for less

time each. That is, as diffusion speed increases, the amount of time necessary to gain sales

is less, and thus t∗m decreases, driving up n∗. Since the number of generations increases,

and thus total sales, profit is also increasing in a2. As a2 increases, I find more variation in

the optimal price. That is, the change in price over time is more noticeable. This creates

a larger maximum price. I illustrate this affect on price in Figure 5-6. As the price curve

changes from the solid line to the dashed line, variation in the price value increases. (In

Figure 5-6, note that the price curve for a2 = 6 actually ends at t = 15, which is the

corresponding length of time on the market, tm, for this a2 value.)

Overall, these numerical results support my analytical conclusions. The sensitivity of

my decision variables to the selected parameters seems fairly intuitive. I can observe the
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Figure 5-6. Increase in Price Variation: p∗(t) vs. a2.

effect of the optimal number of generations, or likewise the optimal time to market, on the

optimal price over time, variation in price, and maximum price offered. A manager may

consider these reported sensitivities when determining his time horizon, negotiating his

unit costs, deciding what population size to market to, or in studying the weight of price

and diffusion in the market.

Please refer to Chapter 6 for the related conclusions and future research extensions.
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CHAPTER 6
CONCLUSIONS

In this chapter, I review the conclusions of each of the research chapters and highlight

how the results of each research contribute to the related literature. I also discuss

future research extensions for each of these research topics as well as for the general

OM/Marketing Interface research, which is the focus of this dissertation.

6.1 Inventory Management under Advance Selling: Optimal Order and
Pricing Policies

In this paper, I consider inventory order and pricing decisions for an advance selling

marketing strategy. In the advance selling strategy, there are two periods: the advance

sales period, succeeded by the spot sales period. I assume that consumption occurs at the

end of the spot period. I assume that an order quantity Q is placed at the beginning of

the advance sales period and some portion of this inventory Xa is allocated a priori for

advance sales. I announce Q, Xa, and the prices pa and ps before the advance sales period.

Customers decide whether or not to purchase based on their valuation V of the

product. I assume this valuation is not realized until the beginning of the spot period. In

the advance sales period, customers compare their expected utility of advance purchasing

versus waiting to spot purchase. These expected utility expressions include the expected

future valuation and the probability of finding inventory (β). I derive a maximum advance

sales price p̂a for which the expected utility of an advance purchase is greater than or

equal to the expected utility of waiting to purchase in the spot period. I find that if I set

my advance sales price to this maximum price, I can induce all advance sales customers

to purchase. I thus assume that upon deciding the advance sales inventory level, Xa, I

will advance sell to Na = Xa customers, of whom all will advance purchase at the price

pa = p̂a.

I thus seek to determine the optimal order policy (Q∗, X∗
a) and optimal pricing policy

(p∗a, p
∗
s) which maximized total expected profit E[Π] attained by both advance sales and

spot sales.
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Bernoulli Customer Valuations 

Sensitivity Analysis Q(H) Xa(H) E[Π(H)] α INC 
CONST (Xa_H > 0) then 

INC (Xa_H = 0) DEC then = 0 INC 

H-L Spread DEC DEC (Xa_H > 0) then 
CONST (Xa_H = 0) 

0 then 
INC DEC 

 
Uniform Customer Valuations  

Sensitivity Analysis Q(H) Xa(H) E[Π(H)] 

ps DEC DEC (Xa_H > 0) then 
INC (Xa_H = 0) DEC then = 0 DEC 

H-L Spread DEC  
with Fv(ps) DEC DEC DEC DEC 

 
 

Table 6-1. Summary of Sensitivity Analysis Trials

Assuming a Bernoulli customer valuation distribution, I find the optimal order

quantity Q∗ for a given Xa for both the case when ps = H and ps = L. When ps = L,

Q∗ = M under a given condition and Q∗ = 0, otherwise. When ps = H, Q∗ has a standard

newsvendor component plus the advance sales inventory Xa.

I then find the optimal advance sales inventory level X∗
a for a given Q for both ps

cases. In both cases, I find an extreme point solution for Xa. When ps = L, I find X∗
a

equal to its upper bound Q under a given condition and X∗
a = 0, otherwise. When ps = H,

I find X∗
a equal to its upper bound M − αk2

(1−α)
< Q under a given condition and X∗

a = 0,

otherwise.

I find the optimal order policy (Q∗, X∗
a) by solving for X∗

a after substituting Q =

Q∗ into the expected profit expression. I find the optimal policy when ps = L to be

(Q∗, X∗
a) = (M, 0); that is I never advance sell when the spot price is low. For ps = H, I

find (Q∗, X∗
a) = (M, M − αk2

(1−α)
) (advance sell to almost everyone) under a given condition

and (Q∗, X∗
a) = (F−1

Ds
(H−c

H
), 0) otherwise.

I determine the optimal pricing policy to be (p∗a, p
∗
s) = (L + (H − L)α, H) for a given

condition and (p∗a, p
∗
s) = (L,L) otherwise.
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I perform several numerical experiments to analyze the sensitivity of my analytical

results to the customer valuation parameters α, H, and L, and to better understand

the behavior of expected profit in the advance sales inventory decision, Xa. I perform a

sensitivity analysis on the effect of the valuation probability α and the spread between

the high and low valuation levels (H − L spread) on the optimal values Q∗, X∗
a , and the

expected profit. I also perform experiments for a Uniform customer valuation distribution.

A summary of all of these experiments is shown in Table 6-1.

My contributions to the literature include analyzing the advance sales inventory

decision Xa as well as the total order decision Q. I show an extreme point solution for the

advance sales inventory Xa leading to a ”go/no-go” advance sales decisions. I also perform

extensive numerical experiments on the sensitivity analysis of the customer valuation

parameters α, H, and L. I find a threshold behavior in the α and H − L Spread values in

determining whether or not to advance sell. I also extend my study to consider a different

customer valuation distribution.

I believe further research can be done to examine other customer valuation distributions.

Future research may also consider additional inventory cost parameters, such as goodwill

penalty and salvage value.

6.2 Multi-Generation Pricing and Timing Decisions in New Product
Development

In my research, I study the optimal time to market and pricing decisions of a two

generation product. I consider three cases for my sales function: CASE 1, price effect only;

CASE 2, diffusion effect only; and CASE 3, price and diffusion effect.

I develop analytical expressions for the optimal decisions in all three cases. For CASE

1, I find a ”now” or ”never” result for time to market. The optimal time to market is

also a function of the optimal prices which are linear in costs. For CASE 2, I derive a

threshold value for the time horizon which determines whether Generation 2 will be

offered sometime within the horizon or never. I also find that when two generations are
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sold, the optimal introduction time for Generation 2 occurs after peak sales of Generation

1. For CASE 3, I derive optimal price expressions and find that a two-generation scenario

seems to be optimal almost all of the time.

I perform numerical analysis for an equal generation benchmark case, which

supports my analytical results. I examine the sensitivity of my decision variables to

cost parameters, population size, and price and diffusion weight parameters for CASE 2

and CASE 3.

I am considering some extensions to this research. One such extension would be to

modify my sales function such that price and diffusion effects are not simply additive.

This should result in a sales rate that is not constant, as I found in CASE 3. To adjust

my model, I may consider replacing the diffusion coefficient, a2 and b2, with some function

of price: A2(p1) and B2(p2). Another extension would be to consider the problem of

determining the optimal number of generations to introduce in a given time horizon under

my joint pricing and timing decision model.

6.3 Optimal Number of Generations for a Multi-Generation Pricing and
Timing Model in New Product Development

In Chapter 5, I look at strategic decisions for a multi-generation new technology

product with sales as a function of both price and diffusion. I derive an analytical

expression for the optimal dynamic price p∗(t) and also show that price is concave over

time. I also derive an analytical expression for the optimal number of generations n∗ given

that the second order conditions hold. I assume equal generations and each generation to

be offered for an equal amount of time, thus from my result for n∗, I am able to determine

t∗m = T/n∗. My analytics employ optimal control theory. An extensive numerical analysis

is also performed.

I believe my analytical results as well as my numerical experiments contribute to

the new product development (NPD) literature and Operations Management (OM) /

Marketing Interface literature by highlighting the decision of the optimal number of
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generations to introduce. In comparison with innovation speed, or clockspeed, papers,

I consider a specific additive model of sales with both pricing and diffusion effects

and simultaneously solve for optimal pricing, timing, and number of generations for a

maximum profit objective.

As an extension, I may consider the clockspeed n as a factor in my sales rate function.

This is based on some of the literature (mostly empirical) which has commented that an

increased clockspeed can create a positive perception of the product on the market. I may

have a sales rate increasing in clockspeed up until some threshold and then decreasing

beyond some number of generations. Consider the following sales rate:

ẋ = a0 − a1p + a2(φ(M − x) +
ψ

M
(M − x)x) + S(n) (6–1)

Where S(n) is some function of n. I may also consider replacing the constant a2 with a

function A2(p) dependent on price. This may replace the additive contribution of price to

sales with a function in which the diffusion effect includes a multiplicative price effect.

My model may also be re-examined to consider the scenario when generations are

not offered for equal time, thus solving for n∗ and t∗m separately. The model can also be

expanded to consider unique generations and the optimal values for t∗mi
, and p∗i (t) for each

generation i.

One could also consider a capacity constraint on sales. That is, the sales rate ẋ(t) ≤
Z, where Z is some fixed capacity. Another extension would be to examine the model

under an infinite time horizon T = ∞. This would require adding discounting to the profit

objective.

6.4 OM/Marketing Interface

The OM/Marketing Interface research area is new and quickly expanding research

area. There has been substantial evidence for the need to consider multi-disciplinary

perspectives when making supply chain decisions. The goal of this dissertation has been

to examine various research questions which combine both operations management
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and marketing decisions. The OM questions I consider include inventory management

and NPD timing and production decisions. I include the marketing decision of pricing

in each of these OM scenarios. I feel that my work has made a contribution to the

growing OM/Marketing Interface research literature, and I hope that my results can be

implemented by supply chain managers.
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APPENDIX A
PROOFS FOR CHAPTER 3: INVENTORY MANAGEMENT UNDER ADVANCE

SELLING: OPTIMAL ORDER AND PRICING POLICIES

Proof of Theorem 1: Optimal Q∗ for Bernoulli Customer Valuations with

ps = L I derive the optimal inventory Q∗ as follows.

E[Π(L)] = (L + (H − L)α(
M −Q

M −Xa

)− ca)Xa

+L(Q−Xa)− cQ (A–1)

s.o.c.

δE[Π(L)]

δQ]
=

−Xa(H − L)α

M −Xa

+ L− c (A–2)

δ2E[Π(L)]

δQ2]
= 0 (A–3)

Proof of Theorem 2: Optimal Q∗ for Bernoulli Customer Valuations with

ps = H

I approximate the spot demand with a Normal distribution with mean µDs =

(M − Xa)α and standard deviation σDs =
√

(M −Xa)α(1− α). I derive the optimal
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inventory Q∗ as follows.

E[Π(H)] = (L + (H − L)α− ca)Xa

+H((M −Xa)α− ΛDs(Q−Xa))− cQ (A–4)

s.o.c.

δE[Π(H)]

δQ]
= −H(FDs(Q−Xa)− 1)− c (A–5)

δ2E[Π(H)]

δQ2]
= −HfDs(Q−Xa) ≤ 0 (A–6)

f.o.c.

0 = −H(FDs(Q−Xa)− 1)− c (A–7)

FDs(Q−Xa) =
H − c

H
(A–8)

Q∗ = F−1
Ds

(
H − c

H
) + Xa (A–9)

Proof of Theorem 3: Optimal X∗
a for Bernoulli Customer Valuations with

ps = L I show expected profit E[Π(L)] to be convex in optimal advance sales inventory X∗
a

as follows.

E[Π(L)] = (L + (H − L)α(
M −Q

M −Xa

)− ca)Xa

+L(Q−Xa)− cQ (A–10)

s.o.c.

δE[Π(L)]

δXa]
=

(H − L)α(M −Q)

(M −Xa)
(1 +

Xa

M −Xa

)− ca (A–11)

δ2E[Π(L)]

δX2
a ]

=
2(H − L)α(M −Q)

(M −Xa)2
(1 +

Xa

M −Xa

) ≥ 0 (A–12)

Assuming H ≥ L and Xa ≤ Q ≤ M , the s.o.c. is always positive, and thus the expected

profit E[Π(L)] is convex in Xa.
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I then compare the extreme point solutions of Xa = Q and Xa = 0 to derive the

following condition.

E[Π(L,Xa = Q)] ≥ E[Π(L,Xa = 0)]

(L + (H − L)α− ca)Q− cQ ≥ Q(L− c)

((H − L)α− ca)Q ≥ 0

(H − L)α ≥ ca (A–13)

Proof of Theorem 4: Optimal X∗
a for Bernoulli Customer Valuations with

ps = H I show an extreme point solution for X∗
a .

I determine that X∗
a must be an extreme point if the expected profit function is never

increasing then decreasing.

Claim:

If E[Π(Q∗, Xa + 1)] ≥ E[Π(Q∗, Xa)]

then E[Π(Q∗, Xa + 2)] ≥ E[Π(Q∗, Xa + 1)], ∀Xa (A–14)

Where I define the following:

E[Π(H)] = (L + (H − L)α− ca)Xa

+H((M −Xa)α− ΛDs(Q−Xa))− cQ

ΛDs(Q−Xa)) =

∫ ∞

Q−Xa

(t−Q + Xa)fDs(t)dt

fDs(t) =
1

σDs

√
2π

e−(t−µDs )2/2σ2
Ds

µDs = (M −Xa)α

σDs =
√

(M −Xa)α(1− α)
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Since I know Q∗ = F−1
Ds(Xa)

(
H−c
H

)
+ Xa, I can further define the following:

ΛDs(Q−Xa)) = ΛDs(F
−1
Ds(Xa)

(
H − c

H

)
)) (A–15)

F−1
Ds(Xa)

(
H − c

H

)
= µDs + σDsk (A–16)

Where I define k =
√

2erf−1(2(H−c
H

)− 1) as a constant.

Examining the conjecture of my claim, I have:

E[Π(Q∗, Xa + 1)] ≥ E[Π(Q∗, Xa)] (A–17)

HΛDs(Xa+1)(F
−1
Ds(Xa+1)

(
H − c

H

)
) ≤ HΛDs(Xa)(F

−1
Ds(Xa)

(
H − c

H

)
)

+ckσXa+1 − (L(1− α)− ca + c(1− α)) +ckσXa (A–18)

Since σDs is always decreasing in Xa and it is reasonable to assume that ca ≤ L + c,

this conjecture will be true when ΛDs(Xa+1) ≤ ΛDs(Xa). That is, expected profit is

increasing when ΛDs(Xa) is decreasing.

Thus, to prove my Claim, I show the following Lemma to be true.

Lemma:

If ΛDs(Xa+1)(F
−1
Ds(Xa+1)

(
H − c

H

)
)) ≤ ΛDs(Xa)(F

−1
Ds(Xa)

(
H − c

H

)
)

then (A–19)

ΛDs(Xa+2)(F
−1
Ds(Xa+2)

(
H − c

H

)
)) ≤ ΛDs(Xa+1)(F

−1
Ds(Xa+1)

(
H − c

H

)
)
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I derive the following conditions for ΛDs(Xa) to be decreasing in Xa.

δ

δXa

ΛDs(Xa)(F
−1
Ds(Xa)

(
H − c

H

)
) =

δ

δXa

ΛDs(Xa)(µDs + σDsk) ≤ 0 (A–20)

if

α(1− α) ≥ σDs

k − 1/2
(A–21)

and

α ≥ 1− µDs(2µDs + 3kσDs)− 2

k2µDs

(A–22)

and

α ≤ 1− 2σ2
Ds

µDs + kσDs

(A–23)

These conditions reduce to the following:

c ≤ 0.31H (A–24)

σDs ≤ 1

4
k − 1

8
(A–25)

αLB ≤ α ≤ αUB (A–26)

where

αLB =





1−
√

1− σDs
k−1/2

2
, for c

H
≥ 0.00169

1− µDs (2µDs+3kσDs )−2

k2µDs
, otherwise

(A–27)

αUB =
1 +

√
1− σDs

k−1/2

2
(A–28)

Therefore, for α within the bounds defined above, I have ΛDs(Xa) to be decreasing

in Xa, and thus expected profit to be increasing in Xa. From my Claim, if the expected

profit is increasing (that is α meets the conditions defined above, then it is always

increasing. Thus, I have an extremem point solution for X∗
a .
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I then compare the extreme point values of Xa to determine which policy will yield

the largest expected profit.

E[Π(H)] = (L + (H − L)α− ca)Xa

+H((M −Xa)α− ΛDs(Q−Xa))− cQ (A–29)

E[Π(H, Xa = Q)] = (L + (H − L)α− ca)Q

+H((M −Q)α− ΛDs(0))− cQ (A–30)

E[Π(H, Xa = 0)] = H((M)α− ΛDs(Q))− cQ (A–31)

(A–32)

E[Π(H,Xa = Q)] ≥ E[Π(H, Xa = 0)] (A–33)

Q[L(1− α)− ca] ≥ H[µDs − ΛDs(Q)] (A–34)

Since ΛDs(0)(0) =
∫∞

0
tfDs(t)dt = µDs .

Proof of Theorem 5: Optimal Policy (Q∗, X∗
a) for Bernoulli Customer

Valuations with ps = L I derive the optimal order policy (Q∗, X∗
a) for ps = L and

Q∗(L) = M as follows.

E[Π(Q∗(L) = M)] = (L− ca)Xa + L(M −Xa)− cM (A–35)

s.o.c.

δE[Π(Q∗(L) = M)]

δXa]
= −ca (A–36)

δ2E[Π(Q∗(L) = M)]

δX2
a ]

= 0 (A–37)

Since the f.o.c. is negative, expected profit is decreasing in Xa; thus, X∗(L) = 0. I

compare the expected profit for the (M, 0) and (0, 0) policies to determine the optimal
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policy. I clearly find the (M, 0) policy to be optimal.

E[Π(L,Q = M, Xa = 0)] = (L− c)M (A–38)

E[Π(L,Q = 0, Xa = 0)] = 0 (A–39)

(A–40)

Proof of Theorem 6: Optimal Policy (Q∗, X∗
a) for ps = H I find an extreme

point solution for Xa as done in Proof A.

I find the upper bound of Xa(H) as follows, assuming Xa ≤ Q and the maximum Q

value is M .

Q = F−1
Ds

(
H − c

H
) + Xa

= µDs + σDsk + Xa (A–41)

Where I define k =
√

2erf−1(2(H−c
H

) − 1) as a constant, independent of Xa. And I have

µDs = (M −Xa)α and σDs =
√

(M −Xa)α(1− α).

If Q = M , its maximum value, then the maximum values of Xa is found as follows.

M = µDs + σDsk + Xa

= (M −Xa)α +
√

(M −Xa)α(1− α)k + Xa

Xa = M − αk2

1− α
(A–42)

If Xa is at its other extreme, 0, then Q∗ = F−1
Ds

(
H−c
H

)
.
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I now compare the (M, M − αk2

1−α
) and (F−1

Ds

(
H−c
H

)
, 0) policies as follows.

E[Π(Q = M, Xa = M − αk2

1− α
)] = (L + (H − L)α− ca)(M − αk2

1− α
)

+H(
α2k2

1− α
− ΛDs(F

−1
Ds

(
H − c

H

)
))

−cM (A–43)

E[Π(Q = F−1
Ds

(
H − c

H

)
, Xa = 0)] = H(Mα− ΛDs(F

−1
Ds

(
H − c

H

)
))

−cF−1
Ds

(
H − c

H

)
(A–44)

E[Π(Q = M, Xa = M − αk2

1− α
)] ≥ E[Π(Q = F−1

Ds

(
H − c

H

)
, Xa = 0)] (A–45)

L(1− α) + c ≥ ca (A–46)

Proof of Theorem 7: Optimal Spot Price p∗s Bernoulli Customer Valu-

ations I compare the expected profit under the optimal order policies for ps = L and

ps = H.

E[Π(L)] = (L + (H − L)α(
M −Q

M −Xa

)− ca)Xa + L(Q−Xa)− cQ

(Q∗(L), X∗
a(L)) = (M, 0)

E[Π(Q∗(L), X∗
a(L))] = (L + (H − L)α(

M −M

M − 0
)− ca)0 + L(M − 0)− cM

= (L− c)M (A–47)

E[Π(H)] = (L + (H − L)α− ca)Xa + H((M −Xa)α− ΛDs(Q−Xa))− cQ

(Q∗(H), X∗
a(H)) = (F−1

Ds
(
H − c

H
) + X∗

a(H), X∗
a(H))

E[Π(Q∗(H), X∗
a(H))] = (L + (H − L)α− ca)X

∗
a(H) + H((M −X∗

a(H))α− ΛDs(F
−1
Ds

(
H − c

H
)))

−c(F−1
Ds

(
H − c

H
) + X∗

a(H)) (A–48)
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Proof of Theorem 8: Optimal Order Quantity Q∗ for Uniform Customer

Valuations I show expected profit to be concave in Q for Uniform customer valuations.

E[Π] = (
H + L

2
− (H − ps)

2

2(H − L)
+

ΛDs(Q−Xa)(H − ps)

2(M −Xa)
− ca)Xa

+ps((M −Xa)
H − ps

H − L
− ΛDs(Q−Xa))− cQ (A–49)

δE[Π]

δQ
=

(
Xa(H − ps)

2(M −Xa)
− ps

)
[FDs(Q−Xa)− 1]− c (A–50)

δ2E[Π]

δQ2
=

(
Xa(H − ps)

2(M −Xa)
− ps

)
fDs(Q−Xa) ≤ 0 (A–51)

I can observe that the s.o.c. is concave for
(

Xa(H−ps)
2(M−Xa)

− ps

)
≤ 0. Assuming this condition

to hold, I solve the f.o.c. to find the optimal Q∗ value as follows.

Q∗ = F−1
Ds

(
ps − c− Xa(H−ps)

2(M−Xa)

ps − Xa(H−ps)
2(M−Xa)

) + Xa (A–52)
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APPENDIX B
PROOFS FOR CHAPTER 4: MULTI-GENERATION PRICING AND TIMING

DECISIONS IN NEW PRODUCT DEVELOPMENT

Proof of Theorem 1: Given the sales rate expressions for CASE 1, I derive the

following:

δf

δp1

= −a1 (B–1)

δg

δp2

= −b1 (B–2)

Since I have δf
δx1

= δg
δx2

= 0, the following solutions for marginal sales λ1 and λ2 directly

follow.

λ1 = 0, ∀t (B–3)

λ2 = 0, ∀t (B–4)

I can then derive the optimal prices as follows:

p∗1 : f(x1, p1) + (p1 − c1 + λ1)
δf

δp1

= 0 (B–5)

a0 − a1p1 − a1(p1 − c1) = 0 (B–6)

p∗1 =
1

2
(
a0

a1

+ c1) (B–7)

p∗2 : g(x2, p2) + (p2 − c2 + λ2)
δg

δp2

= 0 (B–8)

b0 − b1p2 − b1(p2 − c2) = 0 (B–9)

p∗2 =
1

2
(
b0

b1

+ c2) (B–10)

Proof of Theorem 2: To determine the optimal time to market, t∗m, I derive λ3(tm)

as follows.

λ̇3 = (p1 − c1 + λ1)f(x1, p1)− (p2 − c2 + λ2)g(x2, p2) (B–11)

= (p1 − c1)(a0 − a1p1)− (p2 − c2)(b0 − b1p2) (B–12)
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Let us define K1 = (p1 − c1)(a0 − a1p1) and K2 = (p2 − c2)(b0 − b1p2) as the profit

rate for each generation. I can then solve for λ3(tm) using backwards integration (given

λ3(T ) = 0).

λ3(tm) = λ3(T )−
∫ T

tm

λ̇3dt (B–13)

= −
∫ T

tm

(K1 −K2)dt (B–14)

I can then determine the optimal value of t∗m from the condition λ3(tm) ≥ ctm .

Proof of Theorem 3: Given the sales rate expressions for CASE 2, I can derive the

following:

δf

δx1

= a2[ψ − φ− 2
ψ

M1

x1] (B–15)

δg

δx2

= b2[ψ − φ− 2
ψ

M2

x2] (B–16)

Since I have δf
δp1

= δg
δp2

= 0, the optimal prices immediately follow.

p∗1 =





p̂1, f(x1, p1) ≥ 0,

0, otherwise.
(B–17)

p∗2 =





p̂2, g(x2, p2) ≥ 0,

0, otherwise.
(B–18)

Where p̂1 and p̂2 be defined as some maximum price levels set by the market. Since I

define f(x1, p1) and g(x2, p2) as positive functions, the above conditions will always hold.

Proof of Theorem 4: To solve for the optimal time to market, t∗m, I derive the

following differential equation solutions for the marginal value of sales of each generation

and the cumulative sales of each generation:

λ1 =





(p1 − c1)
(

e−a2(φ−ψ)(t−tm)(ea2(φ+ψ)tφ+ψ)2

(ea2(φ+ψ)tmφ+ψ)2
− 1

)
, t < tm,

λ1(t) = λ1(T ) = 0, t ≥ tm.
(B–19)
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λ2 =





λ2(0) = (p2(tm)− c2)
(

e−b2(φ+ψ)T (φ+ψ)2

(eb2(φ+ψ)T φ+ψ)2
− 1

)
, t < tm,

(p2 − c2)
(

e−b2(φ+ψ)(t−T )(eb2(φ+ψ)tφ+eb2(φ+ψ)tmψ)2

(eb2(φ+ψ)T φ+eb2(φ+ψ)tmψ)2
− 1

)
, tm ≤ t < T ,

λ2(T ) = 0, t = T .

(B–20)

x1 =





M1(1−e−a2t(φ+ψ))

1+ψ
φ

e−a2t(φ+ψ) , t < tm,

x1(tm) = M1(1−e−a2tm(φ+ψ))

1+ψ
φ

e−a2tm(φ+ψ) , t ≥ tm.
(B–21)

x2 =





x2(0) = 0, t < tm,

M2(1−e−b2(t−tm)(φ+ψ))

1+ψ
φ

e−b2(t−tm)(φ+ψ) , t ≥ tm.
(B–22)

(Note that the expressions for x1 and x2 are similar to those found in the literature.

Refer to Krishnan, Bass, and Jain (1999) [14].)

I then derive λ3(tm) using backwards integration. Recall that λ3(tm) represents

the marginal benefit of introducing Generation 2 and earning Generation 2 sales for the

remaining time versus continuing to sell Generation 1.

λ3(tm) = λ3(T )−
∫ T

tm

λ̇3(τ)dτ (B–23)

Where λ3(T ) = 0. Using the above solutions for λ1, λ2, x1, and x2, I can derive λ̇3 as

follows:

λ̇3 = (p1 − c1 + λ1)f(x1, p1)− (p2 − c2 + λ2)g(x2, p2) (B–24)

=





(p1 − c1)f(x1(tm))− (p2 − c2 + λ2(tm))(b2φM2), t = tm,

(p1 − c1)f(x1(tm))− (p2 − c2 + λ2(t))g(x2(t)), tm < t ≤ T .
(B–25)
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I can then write λ3(tm) as follows.

λ3(tm) = φ(φ + ψ)2
[− a2M1e

a2(φ+ψ)tm(p1 − c1)

(ea2(φ+ψ)tmφ + ψ)2

+
b2M2e

b2(φ+ψ)(T+tm)(p2 − c2)

(eb2(φ+ψ)T φ + eb2(φ+ψ)tmψ)2

]
(T − tm) (B–26)

This can be simplified to the following expression:

λ3(tm) = [(p2 − c2)g(x2(T − tm))− (p1 − c1)f(x1(tm))](T − tm) (B–27)

I then find t∗m from the condition that λ3(tm) ≥ ctm .

Proof of Theorem 5: I solve for this threshold value by determining the smallest

value of T for which λ3(tm = 0) ≥ ctm .

λ3(tm = 0) = φ(φ + ψ)2(−(a2M1(p1 − c1))

(φ + ψ)2
+

(b2e
b2(φ+ψ)T M2(p2 − c2))

(eb2(φ+ψ)T φ + ψ)2
)T ≥ ctm

(B–28)

When the cost of bringing the second generation to market is negligible ( ctm = 0), I can

derive a value for T̄ .

Proof of Theorem 6:The following relationships are derived from the first order

conditions of optimality:

δf

δx1

= a2[ψ − φ− 2
ψ

M1

x1] (B–29)

δf

δp1

= −a1 (B–30)

δg

δx2

= b2[ψ − φ− 2
ψ

M2

x2] (B–31)

δg

δp2

= −b1 (B–32)
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I begin by examining the optimal price expression to find p∗1(x1, λ1).

p∗1 : f(x1, p1) + (p1 − c1 + λ1)
δf

δp1

= 0

a0 − a1p + a2[φ(M1 − x1) +
ψ

M1

(M1 − x1)x1]− a1(p1 − c1 + λ1) = 0

(B–33)

p∗1(x1, λ1) = −
(−M1(a0 + a1c1 + a2M1φ) + a1M1λ1 + a2x1(M1(φ− ψ) + ψx1)

2a1M1

)

(B–34)

I replace p1 with p∗1(x1, λ1) in the expressions for ẋ1 and λ̇1. Now I solve simultaneous

differential equations to find x1 and λ1.

ẋ1 = f(x1, p
∗
1(x1, λ1))

= a0 − a1p
∗
1(x1, λ1) + a2[φ(M1 − x1) +

ψ

M1

(M1 − x1)x1] (B–35)

λ̇1 = −(p∗1(x1, λ1)− c1 + λ1)
δf

δx1

λ̇1 = −(p∗1(x1, λ1)− c1 + λ1)a2[ψ − φ− 2
ψ

M1

x1] (B–36)

x1 =




t[a1M1(−2 + a2(−φ + ψ)tm)

±
√

a2
1M1(4a2(a0 − a1c1)ψt2m + M1(4 + a2tm(4φ− 4ψ + a2(φ + ψ)2tm)))]




2a1a2ψt2m

(B–37)

λ1 =




(−t + tm)[2a2
1a2c1ψt2m(t + tm)

+(2tm + t(2 + a2(φ− ψ)tm))
√

a2
1M1(4a2(a0 − a1c1)ψt2m + M1(4 + a2tm(4φ− 4ψ + a2(φ + ψ)2tm)))

±a1(2a0a2ψt2m(t + tm) + M1(2tm(2 + a2tm(φ− ψ + a2φψtm))

+t(4 + a2tm(4φ− 4ψ + a2(φ
2 + ψ2)tm))))]




2a2
1a2ψt4m

(B–38)
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I can now replace these solutions for x1 and λ1 in my expression for p∗1(x1, λ1) to find

p∗1.

Likewise, I can repeat this analysis to find x2, λ2, and p∗2.

p∗2 : g(x2, p2) + (p2 − c2 + λ2)
δg

δp2

= 0

b0 − b1p2 + b2[φ(M2 − x2) +
ψ

M2

(M2 − x2)x2]− b1(p2 − c2 + λ2) = 0

(B–39)

p∗2(x2, λ2) = −
(−M2(b0 + b1c2 + b2m2φ) + b1M2λ2 + b2x2(M2(φ− ψ) + ψx2)

2b1M2

)

(B–40)

ẋ2 = g(x2, p
∗
2(x2, λ2))

= b0 − b1p
∗
2(x2, λ2) + b2[φ(M2 − x2) +

ψ

M2

(M2 − x2)x2] (B–41)

λ̇2 = −(p∗2(x2, λ2)− c2 + λ2)
δg

δx2

= −(p∗2(x2, λ2)− c2 + λ2)b2[ψ − φ− 2
ψ

M2

x2] (B–42)
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x2 =




(t− tm)[b1M2(−2− b2(φ− ψ)(T − tm))

±

√√√√√
b2
1M2(M2(4 + 4b2(φ− ψ)(T − tm) + b2

2(φ + ψ)2(T − tm)2)

+4b2(b0 − b1c2)ψ(T − tm)2)
]




2b1b2ψ(T − tm)2
(B–43)

λ2 =




(T − t)[2b2
1b2c2ψ(t + T − 2tm)(T − tm)2

±

√√√√√
b2
1M2(M2(4 + 4b2(φ− ψ)(T − tm) + b2

2(φ + ψ)2(T − tm)2)

+4b2(b0 − b1c2)ψ(T − tm)2)

(t(2 + b2(φ− ψ)(T − tm)) + 2(T − 2tm)− b2(φ− ψ)(T − tm)tm)

−b1(2b0b2ψ(t + T − 2tm)(T − tm)2 + m2(t(4 + 4b2(φ− ψ)(T − tm)

+b2
2(φ

2 + ψ2)(T − tm)2) + 4(T − 2tm)− b2(T − tm)(−2T (φ− ψ + b2φψT )

+(6φ− 6ψ + b2(φ
2 + 4φψ + ψ2)T )tm − b2(φ + ψ)2t2m)))]




2b2
1b2ψ(T − tm)4

(B–44)

Proof of Theorem 7: I derive the expression for λ3(tm) as follows.

λ̇3(p
∗
1, p

∗
2) = (p∗1 − c1 + λ1)f(x1, p

∗
1)− (p∗2 − c2 + λ2)g(x2, p

∗
2)

(B–45)

I know that λ3(T ) = 0 and for t ≥ tm, I have λ1(t) = 0, x1(t) = x1(tm), and p1(t) = p1(tm).

I now solve for λ3(tm) as follows:

λ3(T )−
∫ T

tm

λ̇3(τ)dτ

= −
∫ T

tm

[(p∗1(tm)− c1)f(x1(tm), p∗1(tm))

−(p∗2(τ)− c2 + λ2(τ))g(x2(τ), p∗2(τ))]dτ
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APPENDIX C
PROOFS FOR CHAPTER 5: OPTIMAL NUMBER OF GENERATIONS FOR A
MULTI-GENERATION PRICING AND TIMING MODEL IN NEW PRODUCT

DEVELOPMENT

Proof of Theorem 1: Optimal Price To find the optimal price p∗(t), we first use

Optimal Control to derive an expression for p∗ in terms of cumulative sales x and the

marginal value of sales λ.

δH

δp
= −a1(λ + n(p− c)) + n(a0 − a1p + a2(φ(M − x) +

ψ

M
(M − x)x))

(C–1)

p∗ =
Mn(a0 + a2Mφ) + a1M(nc− λ)− a2nx(M(φ− ψ) + ψx)

2a1Mn

(C–2)

We then solve for x and λ using simultaneous differential equations and Optimal Control

methods.

δH

δx
= (n(p− c) + λ)(M(φ− ψ) + 2ψx)

a2

M
(C–3)

x∗(t) =

t


a1Mn(−2 + a2(ψ − φ)tm) +

√√√√√
a2

1Mn2(4a2(a0 − a1c)ψt2m

+M(4 + a2tm(4φ− 4ψ + a2(φ + ψ)2tm)))




2a1a2nψt2m

(C–4)

λ∗(t) =




(tm − t)(2a2
1a2cnψt2m(t + tm) + (2tm + t(2 + a2(φ− ψ)tm))

√
a2

1Mn2(4a2(a0 − a1c)ψt2m + M(4 + a2tm(4φ− 4ψ + a2(φ + ψ)2tm)))

−a1n(2a0a2ψt2m(t + tm) + M(2tm(2 + a2tm(φ− ψ + a2φψtm))

+t(4 + a2tm(4φ− 4ψ + a2(φ
2 + ψ2)tm)))))




2a2
1a2ψt4m

(C–5)

We then substitute back in the derived x∗ and λ∗ expressions to find the expression for p∗.
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Proof of Corollary 1: Optimal Price Concave over Time The second

derivative of the optimal price p∗(t) over time is the following:

δ2p∗(t)
δt2

=

(2a2
1a2cnψt2m + (2 + a2(φ− ψ)tm)

√
(a2

1Mn2(4a2(a0 − a1c)ψt2m + M(4 + a2tm(4φ− 4ψ + a2(φ + ψ)2tm))))

−a1n(2a0a2ψt2m + M(4 + a2tm(4φ− 4ψ + a2(φ
2 + ψ2)tm))))

a2
1a2nψt4m

(C–6)

We want to show that δ2p∗(t)
δt2

≤ 0 in order to meet the s.o.c. for concavity. Let us define

the following:

Y = 2a1a2nψt2m(a1c− a0) (C–7)

J = 2 + a2tm(φ− ψ) (C–8)

α = a1nM (C–9)

β = 2a2
2t

2
mφψ (C–10)

Then we can rewrite the s.o.c. as follows:

Y + J
√

∆− α(J2 + β)

a2
1a2nψt4m

≤ 0 (C–11)

Where ∆ = α(α(J2 + 2β)− 2Y ).

We can rearrange the s.o.c. expression as follows:

J
√

∆ ≤ α(J2 + β)− Y (C–12)

If we assume a0 ≥ a1c, we have Y ≤ 0. This assumption is reasonable for typical values

of a1, a2, and c based on the empirical literature. If Y ≤ 0, then −Y ≥ 0 and the RHS

of expression C.12 is positive. Now we must note that it is possible for J to be negative.

From the empirical literature, typical values of φ are much smaller than typical values of

ψ. Thus, we usually have φ << ψ which implies that (φ − ψ) would be negative. Thus, if

108



www.manaraa.com

tm ≤ 2
a2(ψ−φ)

, then J ≤ 0. If this is the case, and J is negative, then the LHS of expression

C.12 is negative and the s.o.c. for concavity of p(t) in t always holds. However, if the

condition tm ≤ 2
a2(ψ−φ)

is not true and J is positive, then we can perform the following

analysis:

J2∆ ≤ (α(J2 + β)− Y )2 (C–13)

J2(α2J2 + α22β − α2Y ) ≤ α2(J4 + 2J2β + β2)− 2Y α(J2 + β) + Y 2 (C–14)

0 ≤ (αβ − Y )2 (C–15)

Since the expression C.15 is always true, the s.o.c. for concavity of p(t) in t always holds.

Thus, regardless of whether J is positive or negative, the s.o.c. always holds.

We must also ensure that the square root expression is real by checking that ∆ ≥ 0.

This requires the following condition to be true.

∆ ≥ 0

α(J2 + 2β) ≥ 2Y

(C–16)

Since we have Y ≤ 0 when a0 − a1c ≥ 0, then the expression in C.16 is always true and

therefore ∆ is always positive.

Thus, for a0 − a1c ≥ 0, the s.o.c. is true and p∗(t) is concave in t.

Proof of Theorem 2: Optimal Number of Generations Substituting the

optimal price expression found in Theorem 1 into our profit expression yields the
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following:

Π(p∗(t)) = n

∫ T/n

0

ẋ(p∗(t))(p∗(t)− c(t))dt− nctm (C–17)

=




(a1Mn(−2 + a2(ψ − φ)tm)

+

√√√√√
a2

1Mn2(4a2(a0 − a1c)ψt2m

+M(4 + a2tm(4φ− 4ψ + a2(φ + ψ)2tm)))
)

(−((cT )/n) + 1/(12a2
1a2n

4ψt4m)(T (4a2
1a2cnψT 2t2m

+(−6n2t2m + 3a2n(ψ − φ)Tt2m + 2T 2(2 + a2(φ− ψ)tm))√√√√√
a2

1Mn2(4a2(a0 − a1c)ψt2m

+M(4 + a2tm(4φ− 4ψ + a2(φ + ψ)2tm)))

+a1n(4a0a2ψt2m(−T 2 + 3n2t2m)

+M(3a2n(φ− ψ)Tt2m(2 + a2(φ− ψ)tm)

+6n2t2m(2 + a2tm(φ− ψ + 2a2φψtm))

−2T 2(4 + a2tm(4φ− 4ψ + a2(φ
2 + ψ2)tm)))))))




2a1a2ψtsm2
− nctm

(C–18)

Assuming a benchmark scenario of equal generations offered for equal time to market for

each generation, we replace tm with T/n. Making this substitution in Π, we can find n∗

using the f.o.c.: δΠ
δn

= 0.

δΠ

δn
=

(16Mn2 + 10a2Mn(φ− ψ)T + a2(4a0ψ + a2M(φ + ψ)2)T 2 − 4a1a2cψT 2)
√

a2
1M(4Mn2 + 4a2Mn(φ− ψ)T + a2(4(a0 − a1c)ψ + a2M(φ + ψ)2)T 2)

+a1M(−32Mn3 − 36a2Mn2(φ− ψ)T − 12a2n(2a0ψ + a2M(φ2 + ψ2))T 2

−a2
2(φ− ψ)(6a0ψ + a2M(φ2 + 4φψ + ψ2))T 3)

+6a2
1a2ψT 2(−2a2ctmψT + cM(4n + a2(φ− ψ)T )))

12a2
1a

2
2ψ

2T 3

(C–19)
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The optimal expression for n∗ is derived by setting the above expression to zero and

solving for n.

Second Order Condition for Profit to be Concave in n In order to have n∗

from Theorem 2, derived from the f.o.c. of profit in n, to be optimal, we must first show

that the s.o.c. of profit in n holds. That is, we must have δ2Π
δn2 ≤ 0 true in order for profit

to be concave in n and thus n∗ to be the n value which maximizes the profit function. The

expression for this s.o.c. is as follows:

δ2Π

δn2
≤ 0




−8Mn2(K − 2Mn) + 2a2Mn(−2K + 10Mn(φ− ψ)T

−a2(2(a0 − a1c)(K − 6Mn)ψ + a2M(4Mn(−2φ2 + φψ − 2ψ2)

+K(φ2 + ψ2)))T 2 + a2
2M(φ− ψ)(4(a0 − a1c)ψ + a2M(φ− ψ)2)T 3



≤ 0

(C–20)

Where we define

K =
√

M(4Mn2 + 4a2Mn(φ− ψ)T + a2(4(a0 − a1c)ψ + a2M(φ + ψ)2)T 2)

Although we cannot show analytically that this expression is always true, nor derive

analytical conditions under which this expression would hold, given numerical values for

the expression parameters, this condition can easily be checked. If this condition holds,

then n∗ found in Theorem 2 is indeed the optimal number of generations to offer.
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